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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Classification based on K-Nearest Neighbors (1/2)

K-Nearest Neighbors Algorithm (KNN) 

Assume a training set {𝐱 𝑛 , 𝑑 𝑛 }, 𝑛 = 1,2, … , 𝑁 of vectors 𝐱(𝑛) = 𝑥1(𝑛) 𝑥2(𝑛) … 𝑥𝑚(𝑛) Τ 
with labels 𝑑 𝑛 → 𝒞 indicating the class of 𝐱 𝑛  (e.g. 𝒞 ∈ 0,1 for binary classification) and a 

distance metric, e.g. Euclidean Distance 𝐱 𝑖 , 𝐱(𝑗) = σ𝑘=1
𝑚 𝑥𝑘 𝑖 − 𝑥𝑘 𝑗

2
) or Hamming 

Distance - number of opposite binary digits between (𝐱 𝑖 , 𝐱 𝑗 )

• Training Phase (Lazy Learning Method): Storage of training sample (𝑁 labeled patterns)

• Test Phase: A new vector ො𝐱 is classified according to the labels of the majority of 𝐾 nearest 
neighbors amongst the 𝑁 training patterns (vectors) 𝐱 𝑛

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/ 
• Non-Parametric Methods of Supervised Learning: Based on distance estimates from known sample 

vectors (patterns), without assuming a probabilistic model for the (labeled) training dataset that would 
determine the form of the function 𝑦 = ℎ 𝐱 . 

• By contrast, Parametric Methods are based on pre-selecting a form for the input-output 
function and learn its coefficients from the (labeled) training data (e.g. Linear & Logistic 
Regression, Perceptron, Simple Neural Networks)

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Classification based on K-Nearest Neighbors (2/2)

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm  

Binary Classification

𝒞 ∈ {𝐵𝑙𝑢𝑒_𝑆𝑞𝑢𝑎𝑟𝑒, 𝑅𝑒𝑑_𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒}

Test ො𝐱 : {𝐺𝑟𝑒𝑒𝑛_𝐶𝑖𝑟𝑐𝑙𝑒}

 𝐾 = 3 → Test ∈ 𝑅𝑒𝑑𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒

      𝐾 = 5 → Test ∈ 𝐵𝑙𝑢𝑒_𝑆𝑞𝑢𝑎𝑟𝑒

𝐾: Positive Integer hyperparameter, odd for binary classification, usually selected after 
cross validation trials

𝐾 = 1: A new vector ො𝐱 is classified according to the class of its nearest neighbor (pattern)
𝐾 ≫ 1: Tolerant in distortion/noise of classification regions but with increased storage 

requirements and prone to undesirable impact of outliers, i.e. rare patterns with 
extreme characteristics: Such cases require vector normalization, reduction of 
coordinates and filtering of outliers

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm


Statistical Binary Classification – Parametric Classifiers

Classification of examples (vectors, patterns) of a sample in 2 classes 𝒞 ∈ 𝑷, 𝑵 :
Positive 𝑷, Negative 𝑵

• Diagnosis of infections: Positive ≜ Infected Sample Element
• Identification of anomalies: Positive ≜ Anomalous Sample Element (outlier)
• Recognition of binary patterns (e.g. cats - dogs): Positive ≜ Cat, Negative ≜ Dog
• Target identification signalling: Positive ≜ Foe, Negative ≜ Friend (IFF: Identify Friend or Foe)

The parametric classification algorithms identify parameters of pre-selected input-output 
function 𝑦 = ℎ(𝐱), conforming to training data:
• Assumption of Gaussian distribution for the sample space to be identified with 2 parameters

mean value - variance
• Examples of Parametric Methods:

➢ Parameter tuning in logistic regression from a labeled training sample
➢ Parameter tuning of synaptic weights of perceptron neural networks via iterative back-

propagation of output sample elements and convergence to statistically inferred 
properties from training datasets

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Evaluation of Binary Classification: Confusion Matrix, ROC, AUC (1/3)

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/
Parametric Methods:  Linear & Logistic Regression, Perceptron Convergence, Bayes Classifiers…
Non-Parametric Methods:  KNN, Decision Trees, SVM… 

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/


Confusion Matrix

Confusion Matrix

• Incorrect Predictions: False Positives - 𝐅𝐏, False Negatives - 𝐅𝐍
• Correct Predictions: True Positives - 𝐓𝐏, True Negatives - 𝐓𝐍

Rates of Correct/Incorrect Predictions:

TPR =
TP

TP + FN
, TNR =

TN

TN + FP
 

FNR =
FN

FN + TP
= 1 − TPR , FPR =

FP

FP + TN
= 1 − TNR

Binary Classifier Evaluation Metrics

Accuracy: 𝐀𝐂𝐂 =
TP+TN

TP+TN+FP+FN
(ratio of total correct predictions) 

Sensitivity, Recall: 𝐓𝐏𝐑 =
TP

TP+FN
(correct positive predictions out of actual positive examples)

Precision: 𝐏𝐑𝐄 =
TP

TP+FP
 (correct positive predictions out of positive predictions)

F1-Score:  𝐅𝟏 =
TP

TP+
1

2
(FP+FN)

=
2

𝐓𝐏𝐑−1+𝐀𝐂𝐂−1 (harmonic mean of recall & precision)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Evaluation of Binary Classification: Confusion Matrix, ROC, AUC  (2/3)



Test Sample 12 images: 8 cats (class 𝑷), 4 dogs (class 𝑵)

The binary classifier predicts after training 7 cats and 5 dogs
(9 correct, 3 incorrect) as shown in the Confusion Matrix:

• Accuracy: 𝐀𝐂𝐂 =
TP+TN

TP+TN+FP+FN
=

6+3

12
= 3/4

• Sensitivity (Recall): 𝐓𝐏𝐑 =
TP

TP+FN
=

6

6+2
= 3/4

Example of Image Recognition: Cat or Dog
https://en.wikipedia.org/wiki/Confusion_matrix

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

Receiver Operating Characteristics (𝐑𝐎𝐂), Area Under the Curve (𝐀𝐔𝐂)
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5 

• Definitions from target identification in radar receivers dyring WW2
• Operational separation choices (threshold values) in binary classification (Positive or

Negative Prediction) depending on the administrator preference to select among 
Receiver Operating Characteristics (𝐑𝐎𝐂) points

• Graph 𝐑𝐎𝐂: Function FPR → TPR, {0 ≤ FPR ≤ 1, 0 ≤ TPR ≤ 1}
• Good operational choice in 𝐑𝐎𝐂: TPR ≫ FPR
• Ideal choice: TPR = 1, FPR = 0

Area under 𝐑𝐎𝐂:  𝐀𝐔𝐂 (Area Under the Curve) for 0 ≤ FPR ≤ 1
Measure of Separation Capability of a Classifier
• No separation capability: 𝐀𝐔𝐂 = 0.5
• Separation excellence: 𝐀𝐔𝐂 ≫ 0.5

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Evaluation of Binary Classification: Confusion Matrix, ROC, AUC (3/3)

https://en.wikipedia.org/wiki/Confusion_matrix
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5


Bayes Parametric Estimation Model
• Assumption: Elements (examples) 𝐱 𝑖 ∈ {𝑿} of the sample-space are distributed according 

to a known distribution (e.g. Gauss) into discrete classes 𝒞 based on discrete probabilities of 
a parameter θ of the sample-space, e.g. mean of 𝐱 𝑖 for every class

• Estimators ෠θ of parameter θ indicate the class 𝒞 of an example 𝐱 𝑖

• The ෠θ are inferred from observing examples 𝐱 𝑖  of a training sample𝓓, a subset of the 
sample-space {𝑿} with outputs or labels 𝑑 𝑖 = θ known to a supervisor (teacher) 
(supervised learning)

• According to the Bayes Rule:

𝑃 θ 𝓓 =
𝑃 𝓓 θ 𝑃(θ)

𝑃(𝓓)
where

• 𝑃(𝓓): Evidence, joint probability of observing examples 𝐱(𝑖) in𝓓, sampled from {𝑿}
• 𝑃(θ):     Prior probability of parameter θ assigned to examples in the sample-space {𝑿}
• 𝑃 𝓓 θ : Likelihood, joint probability of all examples in𝓓 conditioned to parameter θ
• 𝑃 θ 𝓓 : Posterior probability of parameter θ for all examples in𝓓

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (1/3)

(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf)

Bayes Rule

𝑃 y x =
𝑃(𝐱, 𝑦)

𝑃(𝐱)
=

𝑃 𝐱 𝑦 𝑃(𝑦)

𝑃(x)

http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (2/3)

http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

𝑃(θ): Prior Assumption based on user-experience of {𝑿} or 
inferred from the observed labeled training subset 𝓓 ⊂{𝑿} 
used to provide evidence of sample-space statistics

A Binary Parametric Classifier
Assumption: Examples 𝑥𝑛 are Gaussian with average θ = μ1 if 𝑥𝑛 → 𝒞1 or θ = μ2 if 𝑥𝑛 → 𝒞2

Likelihood Densities:
𝑓𝑋(𝑥ہ𝒞1), 𝑓𝑋(𝑥ہ𝒞2)

Classification Errors: 
  Shaded areas

Two Estimation Models for  ෠θ ≈ θ

1. Maximum Likelihood Estimation (MLE): Select θ that makes 𝓓 the most probable option     
෠θ = arg max

θ
𝑃 𝓓 θ

2.  Maximum a Posteriori Probability (MAP) Estimation  : Select the most probable θ given 
the observed data 𝓓 and our prior assumptions summarized by 𝑃(θ)

෠θ = arg max
θ

𝑃 θ 𝓓 = arg max 
θ

𝑃 𝓓 θ 𝑃(θ)

𝑃(𝓓)
= arg max

θ
 𝑃 𝓓 θ 𝑃(θ)

http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (3/3) 

(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf)

Example: Bernoulli experiment for tossing a coin with output 𝑋 ∈ ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠 ≜ {1,0}

• Training Sample 𝓓 = {𝑥 1 , 𝑥 2 , … , 𝑥(50)} of 50 trials (examples) used to infer ෠θ as an 
estimate of the ℎ𝑒𝑎𝑑𝑠 probability θ = 𝑃(𝑋 = 1)

• If the trials resulted into 𝑎1 = 24 ℎ𝑒𝑎𝑑𝑠, 𝑎0 = 26 𝑡𝑎𝑖𝑙𝑠, the MLE estimate of θ is
෠θ = arg max

θ
𝑃 𝓓 θ =

𝑎1

(𝑎1+𝑎0)
= 𝟎. 𝟒𝟖, with 𝑃 𝓓 θ = θ𝑎1 1 − θ 𝑎0

• For MAP estimation the Priors 𝑃(θ) are needed, e.g. from empirical understanding of the 
sampling process. In case we believe that the coin favors ℎ𝑒𝑎𝑑𝑠 with 𝑃 1 ≈ 0.6 we may 
modify the experiment adding to observed 𝑎1, 𝑎2 some biased imaginary examples 𝛽1, 𝛽2:

𝑎1 → 𝑎1 + 𝛽1 = 24 + 9 = 33, 𝑎0 → 𝑎0 + 𝛽0 = 26 + 1 = 27 and ෠θ =
33

33+27
= 𝟎. 𝟓𝟓 ≈ 0.6

• With equiprobable choices of θ, MAP ≡ MLE

https://towardsdatascience.com/underst
anding-conjugate-priors-21b2824cddae

Justification of MAP Estimation
• The Likelihood 𝑃 𝓓 θ = θ𝑎1 1 − θ 𝑎0 is Bernoulli:

 𝐵𝑒𝑡𝑎 𝑎1, 𝑎0

• Assume that the Prior 𝑃 θ  is

𝑃 θ ∝ 𝐾θ𝛽1−1 1 − θ 𝛽0−1 ≜ 𝐵𝑒𝑡𝑎 𝛽1, 𝛽0

• If the Posterior 𝑃 θ 𝓓  is similar in form with 𝑃 θ
(Conjugate Distributions) then:

𝑃 𝜃 𝓓 ∝ 𝐵𝑒𝑡𝑎 𝛼1 + 𝛽1, 𝛼0 + 𝛽0

• The estimate ෠θ = arg max
θ

𝑃 θ 𝓓 follows from the 

maximum of 𝐵𝑒𝑡𝑎(33,27) that occurs at θ ≅ 𝟎. 𝟓𝟓 = ෠θ

http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf
https://towardsdatascience.com/understanding-conjugate-priors-21b2824cddae
https://towardsdatascience.com/understanding-conjugate-priors-21b2824cddae


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (3/3) 

(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf)

Probabilities ~ Relative Frequency of examples {𝐱 𝑖 , 𝑑 𝑖 } in the Training Set𝓓
• Input 𝐱(𝑖) = (𝐺𝑒𝑛𝑑𝑒𝑟, 𝐻𝑜𝑢𝑟𝑠𝑊𝑜𝑟𝑘𝑒𝑑) of 𝑚 = 2 binary coordinates (features)

• Output (label) 𝑑 𝑖 ≅ 𝑦 𝑖 = ℎ 𝐱 𝑖 = 𝑊𝑒𝑎𝑙𝑡ℎ ∈ {poor, rich}

Gender (G) HrsWorked (HW) P(rich|G,HW) P(poor|G,HW)

F <40.5 (light) 0.09 0.91

F >40.5 (hard) 0.21 0.79

M <40.5 (light) 0.23 0.77

M >40.5 (hard) 0.38 0.62

Estimates of Probabilities
𝑃 𝐱, 𝑦 = 𝑃(G, HW, 𝑦)

where

G ∈ 𝑀, 𝐹
HW ∈ {𝑙𝑖𝑔ℎ𝑡, ℎ𝑎𝑟𝑑}

𝑦 ∈ poor, rich

Posterior 𝑃 𝑦 𝐱 :  𝑃 ricℎ 𝐹, 𝑙𝑖𝑔ℎ𝑡 =
0.0246

0.2531+0.0246
~𝟎. 𝟎𝟗

𝑚 = 2 features 𝐺, 𝐻𝑊  require 4 posterior probabilities (𝑚 features require 2𝑚)

http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Conditional Independence Assumption, Naïve Bayes Classifier (1/2)

(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf)

Simplifying Approximation - Naive Bayes Classifier
• For a two-dimensional sample with elements 𝐱 = 𝑥1 𝑥2

Τ assume that 𝑥𝑖’s are Conditionally 
Independent from the output 𝑦: 𝑃 𝑥1 𝑥2, 𝑦 ≅ 𝑃 𝑥1 𝑦 . Then: 

𝑃 𝐱 𝑦 = P(𝑥1, 𝑥2ȁ𝑦) = 𝑃 𝑥1 𝑥2, 𝑦 × 𝑃 𝑥2 𝑦 ≅ 𝑃 𝑥1 𝑦 × 𝑃 𝑥2 𝑦

• Generalizing to 𝑚 features of sample elements 𝐱 = 𝑥1 𝑥2 … 𝑥𝑚
Τ the likelihood is:

𝑃 𝐱 𝑦 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑚 𝑦 ≅ ෑ

𝑘=1

𝑚

𝑃(𝑥𝑘ȁ𝑦)

• The Naive Bayes Classifier is based on estimating the posterior 𝑃 𝑑 𝐱 ≅ 𝑃 𝑦 𝐱 based on 
the training sample likelihoods 𝑃(𝐱ȁ𝑦):

𝑃 𝑦 𝐱 =
𝑃(𝑦)𝑃(𝐱ȁ𝑦)

𝑃(𝐱)
∝ 𝑃 𝑦 𝑃 𝑥1 𝑦 𝑃 𝑥2 𝑦 … 𝑃(𝑥𝑚ȁ𝑦)

• A new test sample point 𝐱𝑛𝑒𝑤 = 𝑥1
𝑛𝑒𝑤 𝑥2

𝑛𝑒𝑤 … 𝑥𝑚
𝑛𝑒𝑤 Τ requires ~𝑚 likelihoods for 

classification instead of 2𝑚, a significant simplification to counter the curse of dimensionality

The priors 𝑃 𝑦  are approximated  from the occurrence frequency in the training set, 
assuming a Multinomial Distribution for discrete 𝑥𝑖  values, or Gaussian Distribution 
(Gaussian Naive Bayes Classifier) for continuous 𝑥𝑖 

Bayes rule for Random Variables 𝑋, 𝑌:  𝑃 𝑌 𝑋 =
𝑃(𝑋,𝑌)

𝑃(𝑋)
=

𝑃(𝑋ȁ𝑌)𝑃(𝑌)

𝑃(𝑋)

Conditional Independence of Random Variable 𝑋ȁ𝑌, 𝑍  from 𝑌: 𝑃 𝑋 𝑌, 𝑍 = 𝑃 𝑋 𝑍)

http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Conditional Independence Assumption, Naïve Bayes Classifier (2/2)

(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

The Naive Bayes Classifier is based on approximating the posterior 𝑃 𝑑 𝐱 ≅ 𝑃 𝑦 𝐱 from 
the product of conditionally independent feature likelihoods

𝑃 𝑦 𝐱 ∝ 𝑃 𝑦 𝑃 𝑥1 𝑦 𝑃 𝑥2 𝑦 … 𝑃(𝑥𝑚ȁ𝑦)

Naive Bayes Algorithm:

From a labeled training sample 𝓓 = 𝐱 1 , 𝑑 1 , … , 𝐱 𝑁 , 𝑑 𝑁  estimate:

• The priors 𝑃 𝑑 ≅ 𝑃 𝑦  for all possible classes 𝑑, e.g. 𝑑 ∈ {0,1} for binary classification
• The likelihood 𝑃(𝑥𝑘 = 𝑙ȁ𝑦 = 𝑑) ≜ 𝜃𝑘𝑙𝑑 for every discrete feature 𝑥𝑘, 𝑘 = 1,2, … , 𝑚 of the 

training elements 𝐱 that were classified within class (label) 𝑑

A new example of the test sample 𝐱𝑛𝑒𝑤 = 𝑥1
𝑛𝑒𝑤 𝑥2

𝑛𝑒𝑤 … 𝑥𝑚
𝑛𝑒𝑤 Τ, 𝑥𝑘

𝑛𝑒𝑤 = 𝑙 will be assigned 
to class 𝑦𝑛𝑒𝑤 that will result from:

𝑦𝑛𝑒𝑤 ← arg max
𝑦

𝑃(𝑦) ෑ

𝑘=1

𝑚

𝑃(𝑥𝑘
𝑛𝑒𝑤ȁ𝑦)

or

𝑦𝑛𝑒𝑤 ← arg max
𝑑

𝑃(𝑑) ෑ

𝑘=1

𝑚

𝜃𝑘𝑙𝑑

http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Example of a Naïve Bayes Classifier

https://towardsdatascience.com/all-about-naive-bayes-8e13cef044cf

Fruit Long Sweet Yellow Total

Banana 400 (80%) 350 (70%) 450 (90%) 500 (50%)

Orange 0 (0%) 150 (50%) 300 (100%) 300 (30%)

Other 100 (50%) 150 (75%) 50 (25%) 200 (20%)

Total 500 (50%) 650 (65%) 800 (80%) 1000

𝑃 𝑦 𝐱 ∝ 𝑃 𝑦 𝑃 𝑥1 𝑦 𝑃 𝑥2 𝑦 … 𝑃(𝑥𝑚ȁ𝑦)

• 𝑃 Banana Long, Sweet, Yellow ∝ 0.5 × (0.8) × (0.7) × (0.9) = 0.252
• 𝑃 Orange Long, Sweet, Yellow = 0
• 𝑃 Other Long, Sweet, Yellow ∝ 0.2 × (0.5) × (0.75) × (0.25)  = 0.01875

Classification of a New (Test) Example
Fruits with features (characteristics) 𝐱 = (Long, Sweet, Yellow) are classified as 𝑦 = (Banana)
with the greatest posterior probability 𝑃 𝑦 𝐱 ∝ 0.252

Note: The value of the posterior can be determined by normalizing to 1 the sum of probabilities 

𝑃 𝑦 𝐱 =
0.252

0.252 + 0.01875
= 0.931

Training Sample of 1000 Training Examples

https://towardsdatascience.com/all-about-naive-bayes-8e13cef044cf
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