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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Classification based on K-Nearest Neighbors (1/2)

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/

* Non-Parametric Methods of Supervised Learning: Based on distance estimates from known sample
vectors (patterns), without assuming a probabilistic model for the (labeled) training dataset that would
determine the form of the function y = h(x).

* By contrast, Parametric Methods are based on pre-selecting a form for the input-output
function and learn its coefficients from the (labeled) training data (e.g. Linear & Logistic
Regression, Perceptron, Simple Neural Networks)

K-Nearest Neighbors Algorithm (KNN)

Assume a training set {x(n),d(n)}, n = 1,2, ..., N of vectors x(n) = [x1(n) x,(n) ... x,, ()
with labels d(n) — C indicating the class of x(n) (e.g. C € {0,1} for binary classification) and a

]T

2
distance metric, e.g. Euclidean Distance ||x(i), x(j)|| = \/Z’,Z‘:l(xk(i) — Xy (j)) ) or Homming
Distance - number of opposite binary digits between (x(i), x(j))
* Training Phase (Lazy Learning Method): Storage of training sample (N labeled patterns)

» Test Phase: A new vector X is classified according to the /abels of the majority of K nearest
neighbors amongst the N training patterns (vectors) x(n)


https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Classification based on K-Nearest Neighbors (2/2)
https://en.wikipedia.org/wiki/K-nearest neighbors algorithm

Positive Integer hyperparameter, odd for binary classification, usually selected after
cross validation trials

: A new vector X is classified according to the class of its nearest neighbor (pattern)
: Tolerant in distortion/noise of classification regions but with increased storage

requirements and prone to undesirable impact of outliers, i.e. rare patterns with
extreme characteristics: Such cases require vector normalization, reduction of
coordinates and filtering of outliers

B - Binary Classification

; C € {Blue_Square, Red_Triangle}

- m -

TestX: {Green_Circle}

' K = 3 — Test € Redrrigngie
‘ K =5 - Test € Blue_Square



https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Evaluation of Binary Classification: Confusion Matrix, ROC, AUC (1/3)

Statistical Binary Classification — Parametric Classifiers

Classification of examples (vectors, patterns) of a sample in 2 classes C € {P, N}:
Positive P, Negative N

Diagnosis of infections: Positive = Infected Sample Element

|dentification of anomalies: Positive 2 Anomalous Sample Element (outlier)

Recognition of binary patterns (e.g. cats - dogs): Positive £ Cat, Negative = Dog

Target identification signalling: Positive = Foe, Negative £ Friend (IFF: Identify Friend or Foe)

The parametric classification algorithms identify parameters of pre-selected input-output
function y = h(Xx), conforming to training data:
e Assumption of Gaussian distribution for the sample space to be identified with 2 parameters
mean value - variance
* Examples of Parametric Methods:
» Parameter tuning in logistic regression from a labeled training sample
» Parameter tuning of synaptic weights of perceptron neural networks via iterative back-
propagation of output sample elements and convergence to statistically inferred
properties from training datasets

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/
Parametric Methods: Linear & Logistic Regression, Perceptron Convergence, Bayes Classifiers...
Non-Parametric Methods: KNN, Decision Trees, SVM...



https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Evaluation of Binary Classification: Confusion Matrix, ROC, AUC (2/3)

Confusion Matrix

Predicted class
* Incorrect Predictions: False Positives - FP, False Negatives - FN P N

* Correct Predictions: True Positives - TP, True Negatives - TN

True False
P~ . P | Positives Negatives
Rates of Correct/Incorrect Predictions: (TP) (FN)
Actual
TP TN Class
TPR = —, TNR = —— False True
TP + FN TN + FP N | Positives Negatives
(FP) (TN)
FNR = FN =1 -—TPR FPR = i =1 —TNR
~ FN+TP ' ~ FP+TN Confusion Matrix

Binary Classifier Evaluation Metrics

TP+TN
TP+TN+FP+FN

Sensitivity, Recall: TPR =

Accuracy: ACC =

(ratio of total correct predictions)

—— (correct positive predictions out of actual positive examples)

Precision: PRE =

= (correct positive predictions out of positive predictions)

TP 2

F1-Score: F1 = =
TP+(FP+FN) ~ TPR™'+ACC™?

(harmonic mean of recall & precision)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Evaluation of Binary Classification: Confusion Matrix, ROC, AUC (3/3)

Example of Image Recognition: Cat or Dog

https://en.wikipedia.org/wiki/Confusion matrix

Test Sample 12 images: 8 cats (class P), 4 dogs (class N)

The binary classifier predicts after training 7 cats and 5 dogs F'redglzgig Cat  Dog
(9 correct, 3 incorrect) as shown in the Confusion Matrix: Actual class
TP+TN 6+3 Cat 68 | 2
Accuracy: ACC = TP+TN+FP+FN 12 3/4 Dog 1 s
e TP 6
Sensitivity (Recall): TPR = TPIEN = 13 = 3/4

Receiver Operating Characteristics (ROC), Area Under the Curve (AUC)

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

* Definitions from target identification in radar receivers dyring WW2
* Operational separation choices (threshold values) in binary classification (Positive or
Negative Prediction) depending on the administrator preference to select among

Receiver Operating Characteristics (ROC) points
e Graph ROC: Function FPR - TPR,{0 < FPR <1, 0 < TPR < 1}
* Good operational choice in ROC: TPR > FPR
* J|deal choice: TPR =1,FPR=0

Area under ROC: AUC (Area Under the Curve) for 0 < FPR < 1
Measure of Separation Capability of a Classifier

* No separation capability: AUC = 0.5

» Separation excellence: AUC > 0.5

TPR

FPR


https://en.wikipedia.org/wiki/Confusion_matrix
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (1/3)
(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/Joint MLE MAP.pdf)

Bayes Rule
Pyl )_P(X,y) _ PIy)P(y)
YW= ~ 7 P

Bayes Parametric Estimation Model

« Assumption: Elements (examples) x(i) € {X} of the sample-space are distributed according
to a known distribution (e.g. Gauss) into discrete classes C based on discrete probabilities of
a parameter 0 of the sample-space, e.g. mean of x(i) for every class

« Estimators 0 of parameter 0 indicate the class C of an example x(i)

« The 0 are inferred from observing examples x(i) of a training sample D, a subset of the
sample-space {X} with outputs or labels d(i) = 6 known to a supervisor (teacher)
(supervised learning)

* According to the Bayes Rule:

P(D|6)P(6)

P(6|D) = (D)

where

P(D): Evidence, joint probability of observing examples x(i) in D, sampled from {X}
P(0): Prior probability of parameter 0 assigned to examples in the sample-space {X}
P(D | 9): Likelihood, joint probability of all examples in D conditioned to parameter 0
P(6 | D): Posterior probability of parameter 0 for all examples in D


http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (2/3)
http://www.cs.cmu.edu/~tom/mlbook/Joint MLE MAP.pdf

Likelihood /—> Prior
P(0): Prior Assumption based on user-experience of {X} or
p(6 |D)=2\2 | 6)P(6) inferred from the observed labeled training subset D c{X}
l p(i)’ used to provide evidence of sample-space statistics
raT— eizadia A Binary Parametric Classifier

Assumption: Examples x,, are Gaussian with average 0 = py, ifx,, > C,0or0 =, ifx,, - C,
Decision
boundary

f(x€1) , ~ /vl Likelihood Densities:

< fr(x1CD), f (x1C2)

N Classification Errors:
mo [0\ | Shaded areas

Class Class
€

Two Estimation Models for 8 ~ 0

1.  Maximum Likelihood Estimation (MLE): Select 6 that makes D the most probable option
6 =arg max P(D|6)

2.  Maximum a Posteriori Probability (MAP) Estimation : Select the most probable 0 given

the observed data D and our prior assumptions summarized by P(0)
P(D|6)P(6)

P(D)

6 =arg max P(6|D) =arg max = arg max P(D|6)P (D)


http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (3/3)
(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/Joint MLE MAP.pdf)
Example: Bernoulli experiment for tossing a coin with output X € {heads, tails} £ {1,0}
* Training Sample D = {x(1),x(2), ...,x(50)} of 50 trials (examples) used to infer 0 asan
estimate of the heads probability 8 = P(X = 1)
* If the trials resulted into a; = 24 heads ay = 26 tails, the MLE estimate of 0 is

6 = arg max P(D|06) = e = 0.48, with P(D|0) = 6%1(1 — 9)%
1
* For MAP estimation the Priors P(0) are needed, e.g. from empirical understanding of the

sampling process. In case we believe that the coin favors heads with P(1) = 0.6 we may
modify the experiment adding to observed a4, a, some biased imaginary examples £, f>:

a; > a;+f;=24+9=33,a)> a,+ o =26+1=27 andd = ——=10.55~ 0.6
e With eqmpgqlgq?!e choices of 8, MAP = MLE
T emos s Justification of MAP Estimation
el * The Likelihood P(D|6) = 6%1(1 — 8)% is Bernoulli:

Beta(aq, ay)
* Assume that the Prior P(0) is
P(0) x K6F1=1(1 — 9)Po~1 & Beta(By, Bo)
* If the Posterior P(0|D) is similar in form with P(0)
(Conjugate Distributions) then:
P(0|D) « Beta(ay; + B, a9+ Bo)
* The estimate 6 = arg max P(0|D) follows from the

maximum of Beta(33,27) that occurs at © = 0.55 = 8

p(x|a, b)

https://towardsdatascience.com/underst
anding-conjugate-priors-21b2824cddae



http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf
https://towardsdatascience.com/understanding-conjugate-priors-21b2824cddae
https://towardsdatascience.com/understanding-conjugate-priors-21b2824cddae

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Probabilistic Classification Models, Bayesian MLE & MAP Estimation (3/3)
(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/Joint MLE MAP.pdf)

Probabilities ~ Relative Frequency of examples {x(i), d(i)} in the Training Set D
* Input X(i) = (Gender, HoursWorked) of m = 2 binary coordinates (features)

« OQutput (label) d(i) = y(i) = h(x(i)) = Wealth € {poor, rich}

Gender HoursWorked Wealth | probability
female < 40.5 poor 0.2531
female < 40.5 rich 0.0246
female > 40.5 poor 0.0422
female > 40.5 rich 0.0116
male < 40.5 poor 0.3313
male < 40.5 rich 0.0972
male = 40.5 poor 0.1341
male > 40.5 rich 0.1059
0.0246

Posterior P(y|x): P(rich|F,light) =
" Gender (6) | Hrsorked (W) | Prich G,4W) | Plpoor W)
0.09
0.21
0.23

0.38
m = 2 features {G, HW} require 4 posterior probabilities (m features require 2™)

E
E
M

M

<40.5 (light)
>40.5 (hard)
<40.5 (light)
>40.5 (hard)

0.2531+0.0246

Estimates of Probabilities
P(x,y) = P(G,HW, y)

where
G € {M,F}
HW € {light, hard}
y € {poor, rich}

~0.09

0.91
0.79
0.77
0.62


http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Conditional Independence Assumption, Naive Bayes Classifier (1/2)
(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf)

Bayes rule for Random Variables X,Y: P(Y|X) = PIEE}? = P(Xfl,lg(l;m

Conditional Independence of Random Variable {X|Y,Z} fromY: P(X|Y,Z) = P(X|Z)

Simplifying Approximation - Naive Bayes Classifier
For a two-dimensional sample with elements x = [x; x,]T assume that x;’s are Conditionally
Independent from the output y: P(x{|x5,y) = P(x4|y). Then:
P(x|y) = P(x1,x2|y) = P(xqlxz,¥) X P(x2ly) = P(xq]y) X P(x;]y)

Generalizing to m features of sample elements X = [x; x5 ... x,,]T the likelihood is:
m

PGxly) = PCey, gy 1) = | [ PCrily)
k=1

The Naive Bayes Classifier is based on estimating the posterior P(d|x) = P(y|x) based on
the training sample likelihoods P (X|y):
_ POP(x|y)
P(ylx) = P " P(y)P(x1|y)P(x2y) ... P(xm|y)
A new test sample point XV = [xT¢W x2eW  xeW]T requires ~m likelihoods for
classification instead of 2™, a significant simplification to counter the curse of dimensionality

The priors P(y) are approximated from the occurrence frequency in the training set,
assuming a Multinomial Distribution for discrete x; values, or Gaussian Distribution
(Gaussian Naive Bayes Classifier) for continuous x;



http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Conditional Independence Assumption, Naive Bayes Classifier (2/2)
(T. Mitchell 2016, “Machine Learning” http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

The Naive Bayes Classifier is based on approximating the posterior P(d|x) = P(y|x) from
the product of conditionally independent feature likelihoods

P(y|x) «< P(y)P(x1|y)P(x2|y) ... P(xm|y)

Naive Bayes Algorithm:
From a labeled training sample D = {(x(l), d(1)), . (X(N), d(N))} estimate:

* The priors P(d) = P(y) for all possible classes d, e.g. d € {0,1} for binary classification
* The likelihood P(x) = l|ly = d) £ Oy, for every discrete feature x4, k = 1,2, ..., m of the
training elements X that were classified within class (label) d

A new example of the test sample X"V = [x]'eW x2eW | xIeW]T x7eW = [ will be assigned

to class y™€" that will result from:

m
y"W < arg max P(y) Hp(xircwwb’)
y
k=1

or

m
y"eY « arg max P(d) 1_[ Ok1a
k=1


http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Example of a Naive Bayes Classifier
https://towardsdatascience.com/all-about-naive-bayes-8e13cef044cf

Training Sample of 1000 Training Examples

it Jiong | sweet |velow Lol

Banana 400 (80%) 350 (70%) 450 (90%) 500 (50%)
Orange 0 (0%) 150 (50%) 300 (100%) 300 (30%)
Other 100 (50%) 150 (75%) 50 (25%) 200 (20%)
Total 500 (50%) 650 (65%) 800 (80%) 1000

P(y|x) < P(y)P(x1|y)P(x2|y) ... P(x|y)

« P(Banana|Long, Sweet, Yellow) « (0.5) x (0.8) x (0.7) x (0.9) = 0.252
« P(Orange|Long, Sweet, Yellow) = 0
« P(Other|Long, Sweet, Yellow) « (0.2) x (0.5) x (0.75) x (0.25) = 0.01875

Classification of a New (Test) Example
Fruits with features (characteristics) X = (Long, Sweet, Yellow) are classified as y = (Banana)
with the greatest posterior probability P(y|x) « 0.252

Note: The value of the posterior can be determined by normalizing to 1 the sum of probabilities

P(y|x) = 0252 = 0.931
YX) = 0252 +0.01875



https://towardsdatascience.com/all-about-naive-bayes-8e13cef044cf
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