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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Generic Model of Supervised Learning (repetition)

{𝐱 𝑛 , 𝑑 𝑛 }

ℎ(∙)
Output: 𝑦 = ℎ(𝐱)Input: 𝐱

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall 2018

• The system goal is to assign input vectors (input sample
points, examples, instances) 𝐱 = 𝑥1 𝑥2 … 𝑥𝑚

Τ to output 
values 𝑦 (targets, response values). The coordinates 𝑥𝑖  encode
𝑚 characteristics (features) of the input vector 𝐱

• The form and parameters of ℎ ∙ result from the learning 
algorithm that converges to the system goal for the 𝑁
elements of the training sample

𝑑 𝑛 ≅ 𝑦 𝑛 = ℎ(𝐱 𝑛 )

• If 𝑦 is a finite integer we have a Classification problem
  (for 2 classes we have binary classification)

• If 𝑦 assumes continuous real values we have a Regression 
problem

We seek the input-output function 𝑦 = ℎ(𝐱) ≅ 𝑑 that 
minimizes deviations (errors) between the label 𝑑 (known to 
an external supervisor) and the response 𝑦 for input vectors 

in the Training Set of 𝑁 pairs {𝐱 𝑛 , 𝑑 𝑛 }, 𝑛 = 1,2, … , 𝑁



𝑣 = 

𝑗=0

𝑚

𝑤𝑗𝑥𝑗 = 

𝑗=1

𝑚

𝑤𝑗𝑥𝑗 + 𝑏

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Rosenblatt’s Perceptron (repetition)

Overview:

Rosenblatt introduced the Single-Layer Perceptron as a neuron of linear Induced Local Field 𝑣 and 
non-linear Activation Function 𝜑(𝑣) (Threshold Function, Hard Limiter or Signum Function) for 
binary classification of sample elements 𝐱 = 𝑥0 𝑥1 … 𝑥𝑚

Τ into two linearly separable classes:

𝒞1 if 𝑦 = 𝜑 𝑣 = 1, 𝒞2 if 𝑦 = 𝜑 𝑣 = 0 or if 𝑦 = 𝜑 𝑣 = −1

Synaptic weights 𝐰 = 𝑤0 𝑤1 … 𝑤𝑚
Τ are tuned on-line (stochastic iterative method) via an error-

correction algorithm on labeled training sample elements {𝐱 𝑛 , 𝑑(𝑛)}, 𝑛 = 1,2, … , 𝑁 via supervised 
learning to minimize an error function (e.g. MSE) of deviations [𝑑 𝑛 − 𝑦 𝑛 ]

𝐰 𝑛 + 1 = 𝐰 𝑛 + η 𝑑 𝑛 − 𝑦 𝑛 𝐱(𝑛)

If the learning-rate hyperparameter η, 0 < η ≤ 1 is small it usually leads to (slow) convergence. If it 
is large it may lead to fast convergence (e.g. for environments of significant element deviations) but 
may skip optimality dua to oscillations)

Linearly separable classes

Non-linearly separable classes

Note: With Gaussian elements 𝐱(𝑛) Bayes Classifiers into two classes 𝒞1, 𝒞2 (based on minimization of error probability 
with a-known a-priori probabilities 𝑝1, 𝑝2) is identical to the Rosenblatt Perceptron   



Associative learning process for associating input vectors 𝐱𝑘 to 𝑞 memorized patterns 𝐲𝑘

Methods of Associative Learning:

➢ Autoassociation: 𝐱𝑘 = 𝐲𝑘

   Vectors 𝐱𝑘 are (distorted) examples to be paired (associated, classified) with pre-stored 
patterns 𝐲𝑘 of the same dimensionality 𝐷. Using a Multilayer Perceptron (MLP) we may 
encode 𝐱𝑘 to hidden (latent) vectors 𝐳𝑘 of lower dimension 𝑀 < 𝐷. These are decoded in a 
next layer as in autoencoders. The MLP parameters are tuned via Unsupervised Learning
using the 𝑞 training key patterns 𝐱𝑘 = 𝐲𝑘 , 𝑘 = 1,2, … , 𝑞

➢ Heteroassociation: 𝐱𝑘≠ 𝐲𝑘

   Pairing of arbitrary input and output vectors (patterns) via Supervised Learning

Phases of Associative Learning:
• Storage of key patterns: Training the system by using several input vectors 𝐱𝑘

• Recall involving association (classification) of a new example 𝐱𝑘 (stimulus, input vector, e.g. 
hand-written decimal numbers or distorted images) to a pre-stored pattern 𝐲𝑘 

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Pattern Association (S. Haykin: Introduction, Section 9)

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-
Machine-Learning-2006.pdf 

Key Patterns → Memorixed Patterns

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Pattern Recognition (S. Haykin: Introduction, Section 9)

Recognition of a new input pattern by extracting its basic features and classifying it to a class,
statistically consistent with pre-stored patterns during system training

The process may comprise 2 steps:

• Feature Extraction: Transformation of input 𝐱 (vector of 𝑚 dimensions) to an intermediate 
vector 𝐲 of dimension 𝑞 ≤ 𝑚 via unsupervised learning. With 𝑞 < 𝑚 we may have data 
compression or extraction of important features to simplify the classification process

• Classification: Association of 𝐲 into 𝑟 discrete classes via supervised learning (involving the 
hidden layers of the feature extraction module). If 𝑟 = 2 we have binary classification

https://en.wikipedia.org/wiki/MNIST_database

A Labeled Training Sample for Classification of Hand-written Numbers: 
MNIST Database to classify had-written numbers in 𝑟 = 10 classes (0 , … , 9)

https://en.wikipedia.org/wiki/MNIST_database

https://en.wikipedia.org/wiki/MNIST_database


(a) Linearly 
separable 
dichotomy

(c) Quadrically 
separable 
dichotomy

(b) Spherically 
separable 
dichotomy

Classification via Separable Patterns
Involves pairing of an input vector 𝐱 (example, instance) to 𝑁 pre-stored 
separable patterns 𝐱1, 𝐱2, … , 𝐱𝑁 of dimension 𝑚0. Binary classification 
assumes 2 classes ∁1 & ∁2

Cover’s Theorem (1965)
• A complex pattern-classification problem, cast in a high-dimensional space 

nonlinearly, is more likely to be linearly separable than in a low-dimensional 
space, provided that the space is not densely populated

• For easier pattern classification, linear separability may be enforced by 
performing a non-linear transformation of the vector-space, even if it 
involves a higher dimensional space

Hidden Functions
Vectors 𝐱 of dimension 𝑚0 are mapped via a non-linear transformation to 
vectors 𝛗 𝐱  of dimension 𝑚1 ≥ 𝑚0

𝐱 → 𝛗 𝐱 = 𝜑1 𝐱 𝜑2 𝐱 … 𝜑𝑚1
𝐱

T
 

𝜑𝑗 𝐱 ∈ ℝ, 𝑗 = 1,2, … , 𝑚1 are Hidden Functions, mostly Radial-Basis 

Functions (RBF) that depend on Euclidean Distance (𝐱, 𝛍𝑗) from 𝐱 to center 𝛍𝑗

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Separability of Patterns

For the binary case, the new pattern space exhibits 𝛗-separable dichotomy if there exists a 
vector 𝐰 with 𝑚1 ≥ 𝑚0 coordinates that defines two linearly-separable regions ∁1 & ∁2 of 𝐱: 

𝐰T𝛗 𝐱 > 0 ⇒ 𝐱 ∈ ∁1 and 𝐰𝑇𝛗 𝐱 < 0 ⇒ 𝐱 ∈ ∁2



0

0

1

1

Example of Evaluation of 𝛗 𝐱 ,  𝐱 = 1 1 T 

𝜑1 1,1 = exp − 1 1 T − 1 1 T 2
= 1

𝜑2 1,1 = exp − 1 1 T − 0 0 T 2
= 0.1353

Output:  𝑦 = 𝑤𝜑1 𝐱 + 𝑤𝜑2 𝐱 + 𝑏
(1,1): 𝑤 + 𝑤 × 0.1353 + 𝑏 = 0
(0,1): 𝑤 × 0.3678 + 𝑤 × 0.3678 + 𝑏 = 1
(0,0): 𝑤 × 0.1353 + 𝑤 + 𝑏 = 0
(1,0): 𝑤 × 0.3678 + 𝑤 × 0.3678 + 𝑏 = 1

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Pattern Separablity – The XOR Problem

Gaussian Radial-Basis Function (RBF) 

A usual choice: 𝛗 𝐱 = 𝜑1 𝐱 𝜑2 𝐱 … 𝜑𝑚1
𝐱

T
∈ ℝ𝑚1 ,  𝜑𝑗 𝐱 ∈ ℝ,  𝐱 ∈ ℝ𝑚0 ,  𝑚0 ≤ 𝑚1

𝜑𝑗 𝐱 = exp − 𝐱 − 𝛍𝑗
2

, 𝐱 ∈ ℝ𝑚0 , 𝑚0 ≤ 𝑚1, 𝛍𝑗  center of 𝜑𝑗 𝐱 , 𝐱 − 𝛍𝑗  distance (𝐱, 𝛍𝑗)

𝑚0 = 𝑚1 = 2
𝐰 = 𝑤 𝑤 T

𝐱 = x1 x2
T → 𝛗 𝐱 = 𝜑1 𝐱  𝜑2 𝐱 T

 𝜑1 𝐱 = exp − 𝐱 − 𝛍1
2 , 𝛍1 = [1,1]T

  𝜑2 𝐱 = exp − 𝐱 − 𝛍2
2 , 𝛍2 = [0,0]T

Solution
𝑤 = −2.502

𝑏 = 2.841



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Definitions of Radial-Basis Function (RBF), Kernels & Hybrid Learning
(based on C. M. Bishop, Ch.6: Kernel Methods https://www.microsoft.com/en-

us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)

Kernel Trick: Enforce linearity of decision 
surface by increasing dimensionality and 
proper selection of kernel (Cover’s Theorem)

Radial-BasIs Function (RBF): 𝐱 ∈ ℝ𝑚0 → 𝜑𝑗 𝐱 = 𝜑 𝐱 − 𝐱𝑗 = 𝜑 𝑟 ∈ ℝ, 𝑗 = 1,2, … , 𝑚1

where 𝑟 = 𝐱 − 𝐱𝑗  is the non-negative Euclidean radial distance (𝐱, 𝐱𝑗)

• Transformation: 𝐱 → 𝛗 𝐱 = 𝜑1 𝐱  𝜑2 𝐱 … 𝜑𝑚1
𝐱

T
, 𝑚1 ≥ 𝑚0 leading as per Cover’s 

Theorem to linearly separable classification (linear decision surface) 

• Example: A Gaussian RBF 𝜑𝑗 𝐱 = exp − 𝐱 − 𝐱𝑗
2

 is a function of the Euclidean

distance from an input vector 𝐱 with 𝑚0 coordinates (features) from pattern 𝐱𝑗

• Hidden Functions: The 𝜑𝑗 𝐱 represent 𝑚1 hidden features of 𝐱 as distances from the 𝐱𝑗 

centroid patterns determined in the 1st Phase of Hybrid Learning that performs clustering 
via unsupervised learning (e.g. via the K-Means algorithm)

• Pattern Classification: The 2nd Phase of Hybrid Learning involves the final pattern choice for 
a vector 𝐱 ∈ ℝ𝑚0 via a feed-forward network and supervised learning

Kernel: 𝑘(𝐱, 𝐱𝑗) ∈ ℝ is a similarity metric (~inner product) between 𝐱 and centers 𝐱𝑗 ∈ ℝ𝑚0

• Relationship to RBF: 𝑘 𝐱, 𝐱𝑗 = 𝛗 𝐱 T𝛗 𝐱𝑗 , 𝑗 = 1,2, … , 𝑚1 (inner product)

• 𝑘 𝐱, 𝐱𝑗  is symmetric about 𝐱𝑗, has constant volume under its surface and attains a 

maximum at 𝐱 = 𝐱𝑗 
With volume normalized to 1, kernels ~ probability densities

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Binary Classification - Kernel Perceptron
https://en.wikipedia.org/wiki/Kernel_perceptron, 

Training Algorithm: Initialize to 𝐰 = 0 0 … 0 T and iteratively 
apply labeled input patterns {𝐱𝑖 , 𝑑𝑖}, 𝑑i ∈ −1,1 , 𝑖 = 1,2, … , 𝑁 

to evaluate 𝑦 = sgn 𝐰T𝐱𝑖 :

𝐰 ← ቊ
𝐰 if 𝑦 = 𝑑𝑖 (right decision)

𝐰 + 𝑑𝑖 𝐱𝑖  if 𝑦 ≠ 𝑑𝑖 (wrong decision)

2. Non-Linear Kernel Method Classifier: 𝑦 = sgn σ𝑖=1
𝑁 𝛼𝑖𝑑𝑖𝑘(𝐱, 𝐱𝑖) ∈ {−1,1}

The Classifier stores 𝑁 training patterns 𝐱𝑖 ∈ ℝ𝑚0 of 𝑚0 coordinates along with labeled pairs 
{𝐱𝑖 , 𝑑𝑖}, and proceeds to updates counters 𝛼𝑖 for classifications 𝐱 → 𝑦 ∈ {−1,1}. The machine
processes the output 𝑦 for an input 𝐱 based on selecting a kernel 𝑘(𝐱, 𝐱𝑖) and using the rule:

𝑦 = sgn 

𝑖=1

𝑁

𝛼𝑖𝑑𝑖𝑘(𝐱, 𝐱𝑖) ∈ {−1,1}

• The Kernel 𝑘(𝐱, 𝐱𝑖) ∈ ℝ is the inner product of non-linear hidden functions of dimensionality 
𝑚1 ≥ 𝑚0: 𝑘 𝐱, 𝐱𝑖 =  𝛗 𝐱 T𝛗 𝐱𝑖 =  𝛗 𝐱𝑖

T𝛗 𝐱 = 𝑘 𝐱𝑖 , 𝐱
• It stresses the impact of similarity between vectors 𝛗 𝐱  and all 𝛗 𝐱𝑖  by considering the 

non-linear mapping of vectors 𝐱 & 𝐱𝑖 into a space of augmented dimensionality

Training Algorithm: Weights are updated as 𝐰 = σ𝑖=1
𝑁 𝛼𝑖 𝑑𝑖 , 𝐱𝑖 with 𝛼𝑖 the counter of wrong 

decisions 𝐱𝑖 → 𝑦 ≠ 𝑑𝑖

For every training labeled pattern pair 𝐱𝑖 , 𝑑𝑖 ,  𝑖 = 1,2, … , 𝑁 evaluate

𝑦 = sgn 𝐰T𝐱𝑖 = sgn σ𝑗=1
𝑁 𝛼𝑗𝑑𝑗𝑘( 𝐱𝑖 , 𝐱𝑗).  If 𝑦 ≠ 𝑑𝑖 increment the counter 𝛼𝑖 ← 𝛼𝑖 + 1

1. Linear Perceptron Classifier: 𝑦 = sgn(𝐰T𝐱) ∈ {−1,1}

https://en.wikipedia.org/wiki/Kernel_perceptron


• Output Layer:
 Sum-of-products of base function 𝛗 𝐱 = 𝜑1 𝐱 𝜑2 𝐱 … 𝜑𝑁 𝐱 T weighted by 𝑤1, 𝑤2,…, 𝑤𝑁 

𝑦 = 𝐹 𝐱 = 𝐰T𝛗 𝐱 = 

𝑗=1

𝑁

𝑤𝑗𝜑 𝐱 − 𝐱𝑗 , 𝑦 ∈ {−1,1}

• Training via Supervised Learning: 

✓ Solve the linear system of 𝑁 equations 𝐹 𝐱𝑖 = σ𝑗 𝑤𝑗 𝜑 𝐱𝑖 − 𝐱𝑗 = 𝑑𝑖 resulting from the

𝑁 labeled elements 𝐱𝑖 , 𝑑𝑖 of the training sample to determine the 𝑁 weights 𝑤𝑗 

✓ The hidden neurons 𝐹 𝐱𝑖 = 𝑑𝑖 define a hyper-surface for binary decisions
✓ The linear system always yields a solution 𝐱𝑖 (Micchelli’s Theorem)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Radial-Basis Function (RBF) Network Model

• Input Layer: Input vectors 𝐱 with 𝑚0 
features feed with no modification an
intermediate hidden layer

• Hidden Layer: For the Training Dataset of
𝑁 ≥ 𝑚0 elements (patterns), define
𝑁 hidden nodes that enable Gaussian RBF:

𝜑𝑗 𝐱 = 𝜑(𝐱, 𝐱𝑗) = 𝜑 𝐱 − 𝐱𝑗

= exp(− 𝐱 − 𝐱𝑗
2

)

(Gaussian functions of Euclidean distances 

𝐱 − 𝐱𝑗
2

for the 𝑁 (𝐱, 𝐱𝑗) training pairs)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Radial-Basis Function (RBF) Network for XOR  

𝐱 φ1 𝐱 φ2 𝐱 φ3 𝐱 φ4 𝐱 𝑦

(1,1) 1 0.1353 0.3678 0.3678 0

(0,0) 0.1353 1 0.3678 0.3678 0

(0,1) 0.3678 0.3678 1 0.1353 1

(1,0) 0.3678 0.3678 0.1353 1 1

Training Data: 𝑁 = 4 labeled elements (patterns) 𝐱𝑖 = 𝑥𝑖 1  𝑥𝑖 2 T → 𝑦 = 𝐹 𝐱𝑖

where {𝑥𝑖 1 , 𝑥𝑖 2 , 𝑦} binary variables ∈ {0,1} and 𝑖 ≤ 𝑁 = 4

Radial-Basis Functions: Select Gaussian φ𝑗 𝐱 = exp(− 𝐱 − 𝛍𝑗
2

) , 𝑗 = 1,2,3,4

placed around 4 centers: 𝛍1 = 1 1 , 𝛍2 = 0 0 , 𝛍3 = 0 1 , 𝛍4 = 1 0

𝑦 = 𝐹 𝐱 = 𝑤1𝜑1 𝐱 + 𝑤2𝜑2 𝐱 + 𝑤3𝜑3 𝐱 + 𝑤4𝜑4 𝐱

Parameter Tuning of RBF Network
    𝑤1 = 𝑤2 = −0.9843

𝑤3 = 𝑤4 = 1.5188

(based on “Hybrid Learning – RBF” in Lectures 2019-2020 by A. Stafylopatis, E.C.E., NTUA)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Radial-Basis Function (RBF) Networks – Practical Implementation

RBF networks are trained in reasonable time
but require excessive storage for 𝑁 hidden 
nodes (equal to the number of elements in 
the training dataset), accurate 
measurements of labeled elements 𝐱𝑖 , 𝑑𝑖

and significant computational complexity

Approximate Implementation:
Deploy a smaller number of hidden nodes
𝐾 < 𝑁 that defines a vector space of 𝐾
dimensions and tune for 𝐾 wights:

𝑦 = 𝐹 𝐱 = 𝐰T𝛗 𝐱 = 

𝑗=1

𝐾

𝑤𝑗𝜑 𝐱 − 𝛍𝑗
Hybrid Learning

Training set of 𝑁 vectors, number of hidden nodes 𝐾 < 𝑁, tuning for fewer synaptic weights 𝑤𝑗 ,

• Input Layer: Vector elements 𝐱 with 𝑚0 coordinates (features) 𝑚0 ≤ 𝐾 < 𝑁

• Hidden Layer: 𝐾 hidden nodes implementing 𝜑 𝐱 − 𝛍𝑗 , with 𝛍𝑗the centroids (cluster

heads) of 𝐱 ∈ ℝ𝑚0  as per K-Means Clustering with Euclidean distance 𝐱 − 𝛍𝑗
2

• Output Layer: Linear combination of 𝐾 RBF’s φ𝑗 𝐱  :  

𝑦 = 𝐹 𝐱 = 𝐰T𝛗 𝐱 = σ𝑗=1
𝐾 𝑤𝑗𝜑 𝐱 − 𝛍𝑗

Tuning for 𝐾 weights 𝑤𝑗 from the 𝑁 training pairs 𝛗(𝐱𝑖), 𝑑𝑖 with Supervised 

Learning and MSE approximations:  𝑑𝑖 ≅ 𝐹 𝐱𝑖 = 𝐰T𝛗 𝐱𝑖 = σ𝑗=1
𝐾 𝑤𝑗𝜑 𝐱𝑖 − 𝛍𝑗



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Multi-layer Perceptron (MLP) vs. RBF

MLP
• Many Hidden Layers
• Supervised Learning
• Batch or On-line (Stochastic) Learning
• Back-propagation Algorithm
• Non-linear Activation Function
• Slow Training Convergence
• Tolerant to Input Inaccuracies & Noisy 

Vectors

RBF
• A Single Hidden Layer
• Hybrid Learning
• Non-linear Transformation of Input Vectors 

via Radial-Basis Functions (Gaussian)
• Flexibility in Region Separation for 

Classification of Input (pattern vectors)
• Fast Training Convergence
• Sensitive to Measurement Accuracy of 

Sample Vectors
• The Hyper-surface for Binary Separability 

may be Generalized to Classify Noisy Vectors 
via Interpolation



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Support Vector Machines (SVM) - Linearly Separable Binary Classifiers (1/3)

• For labeled training sample vectors 𝐱𝑖 , 𝑑𝑖 , 𝑑𝑖 ∈ −1, +1 , 
𝑖 = 1,2, … , 𝑁 the SVM defines binary classification regions
with the largest margin of separation via supervised learning

• For linearly separable regions and a vector 𝐱 (pattern) with 𝑚 
dimensions (features), the separation hyper-plane is defined  
by the equation:

Classification of training sample vectors follows the rule:

• The distance ρ0 of the closest vector 𝐱0  from the separation hyper-plane identifies the 
margin that should by maximized to yield optimal separation of regions: 𝐰o

T𝐱 + 𝑏o = 0

• We have from geometry that ρ =
2

𝐰ο
with 𝐰ο the Euclidean norm of weight vector 𝐰ο

• For the training vectors 𝐱𝑖 , 𝑑𝑖 we have: 
 𝐰o

T𝐱𝑖 + 𝑏o ≥ 1 if 𝑑𝑖 = +1
 𝐰o

T𝐱𝑖 + 𝑏o ≤ 1 if 𝑑𝑖 = −1
• Training vectors 𝐱𝑖 for which equality holds in the relations above are identified as the 

Support Vectors 𝐱𝑖
𝑆 that define the separation zone

• The two relations can be expressed as unified constraints for the training set:
𝑑𝑖(𝐰T𝐱𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … , 𝑁

𝐰T𝐱 + 𝑏 = 0 with 𝐰 denoting synaptic weights & 𝑏 is a bias

𝐰T𝐱𝑖 + 𝑏 ≥ 0 if 𝑑𝑖 = +1
𝐰T𝐱𝑖 + 𝑏 < 0 if 𝑑𝑖 = −1
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Non-Linear Programming Formulation

Maximization of Separation Margin ρ =
2

𝐰𝜊
⇔ Minimization of 𝐰𝜊

2 = 𝐰𝜊
T𝐰𝜊

The objective function is non-linear (sum of squares) under linear constraints. The weight 
vector 𝐰 can be determined by using classical Mon-Linear Programming methods, e.g. by 
introducing Lagrange Multipliers 𝜆𝑖  assigned to constraints 𝑑𝑖(𝐰T𝐱𝑖 + 𝑏) ≥ 1:

• Define the Lagrangian  𝐽 𝐰, 𝑏, 𝜆1, 𝜆2, … , 𝜆𝛮 =
1

2
𝐰T𝐰 − σ𝑖=1

𝑁 𝜆𝑖[ 𝑑𝑖(𝐰T𝐱𝑖 + 𝑏)]

• The optimal point for the 𝑁 training vectors 𝐱𝑖 must satisfy the Kuhn-Tucker conditions:

𝜕𝐽

𝜕𝐰
= 0 → 𝐰 = 

𝑖=1

𝑁

𝜆𝑖𝑑𝑖𝐱𝑖

𝜕𝐽

𝜕𝑏
= 0 → 

𝑖=1

𝑁

𝜆𝑖𝑑𝑖 = 0

• Variables 𝐰, 𝑏 identify the optimal separation hyper-plane 𝐰T𝐱 + 𝑏 = 0

• The Support Vectors 𝐱𝑖
𝑆 correspond to 𝜆𝑖 > 0.  The remaining 𝐱𝑖’s to 𝜆𝑖 = 0

Constrained Optimization to determine the SVM parameters (synaptic weights 𝐰 and bias 𝑏):

min
𝐰

Φ 𝐰 =
1

2
𝐰T𝐰 given 𝑑𝑖(𝐰T𝐱𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … , 𝑁

(based on “Support Vector Machines” in Lectures 2019-2020 by G. Stamou, E.C.E., NTUA)
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Possible Violations of Linear 
Separability: 

• An 𝐱𝑖 , 𝑑𝑖 is located within the 
separation zone but on the right side 
of the optimal hyper-plane

• An 𝐱𝑖 , 𝑑𝑖  is located within the 
separation zone but on the wrong side 
of the optimal hyper-plane

SVM Architecture Using RBF Network Model
Use a great number of hidden nodes 𝑚1 (up to 
the number of training support vectors) that 
transform two non-linear separable regions of 
input vectors 𝐱 with dimensionality 𝑚0 ≪ 𝑚1 
into two linearly separable hyper-planes
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