
Prof. Vasilis Maglaris
maglaris@netmode.ntua.gr

www.netmode.ntua.gr

Room 002, New ECE Building

Tuesday April 29, 2025

STOCHASTIC PROCESSES & OPTIMIZATION IN
MACHINE LEARNING

1. Model-Free Methods in Reinforcement Learning
Direct Approximations, Random Trajectories & State-Action Counting

Temporal-Difference & Stochastic Q-Learning

2. Distributed Multi-Agent Reinforcement Learning
3. Bellman-Ford Algorithm, BGP Routing in the Internet

NTUA - National Technical University of Athens, DSML - Data Science & Machine Learning Graduate Program

mailto:maglaris@netmode.ntua.gr
http://www.netmode.ntua.gr/

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Summary of Dynamic Programming Definitions (1/2)

D. P. Bertsekas & J. Tsitsiklis, “Neuro-Dynamic Programming,” Athena MA 1996
R. S. Sutton & A. G. Barto, “Reinforcement Learning,” MIT Press 2018

Dynamic Programming - Reinforcement Learning (RL) Definitions: Cost Minimization

Observed Cost of transition step 𝑖 → 𝑗 with agent action 𝑎: 𝑔 𝑖, 𝑎, 𝑗

Immediate Expected Cost of environment state 𝑖 and agent action 𝑎:

𝑐 𝑖, 𝑎 ≜ σ𝑗=1
𝑁 𝑝𝑖𝑗𝑔 𝑖, 𝑎, 𝑗

Cost-to-Go : 𝐽μ 𝑖 = 𝑐 𝑖, μ(𝑖) + γ σ𝑗=1
𝑁 𝑝𝑖𝑗 μ(𝑖) 𝐽μ(𝑗) , 𝑖 = 1,2, … , 𝑁 under policy μ(𝑖)

Optimal Cost-to-Go (Bellman): 𝐽∗ 𝑖 = min
𝑎∈𝒜𝑖

𝑐 𝑖, 𝑎 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗𝐽∗(𝑗) , 𝑖 = 1,2, … , 𝑁

Definition of Q-Factors: 𝑄μ 𝑖, 𝑎 ≜ 𝑐 𝑖, 𝑎 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗 𝑎 𝐽μ(𝑗) for ∀𝑖 and ∀𝑎 ∈ 𝒜𝑖

Dynamic Programming - Reinforcement Learning (RL) Definitions: Reward Maximization

Observed Reward of transition step 𝑖 → 𝑗 with agent action 𝑎: 𝑅 𝑖, 𝑎, 𝑗
Immediate Expected Reward of environment state 𝑖 and agent action 𝑎:

𝑟 𝑖, 𝑎 ≜ σ𝑗=1
𝑁 𝑝𝑖𝑗𝑅 𝑖, 𝑎, 𝑗

Value Function : 𝑉μ 𝑖 = 𝑟 𝑖, μ(𝑖) + γ σ𝑗=1
𝑁 𝑝𝑖𝑗 μ(𝑖) 𝑉μ(𝑗) , 𝑖 = 1,2, … , 𝑁 under policy μ(𝑖)

Optimal Values (Bellman): 𝑉∗ 𝑖 = max
𝑎∈𝒜𝑖

𝑟 𝑖, 𝑎 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗𝑉∗(𝑗) , 𝑖 = 1,2, … , 𝑁

Definition of Q-Factors: 𝑄μ 𝑖, 𝑎 ≜ 𝑟 𝑖, 𝑎 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗(𝑎) 𝑉μ 𝑗 for ∀𝑖 and ∀𝑎 ∈ 𝒜𝑖

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Summary of Dynamic Programming Definitions (2/2)

https://www.is.uni-freiburg.de/ressourcen/business-analytics/13_reinforcementlearning.pdf

Model-based & Model-free Reinforcement Learning (RL)

Nicolas Pröllochs & Stefan Feuerriegel, Business Analytics Practice 2015/16
https://www.is.uni-freiburg.de/ressourcen/business-analytics/13_reinforcementlearning.pdf

• Algorithms based on Markov Decision Processes models of environment evolution with a-
priori known transition probabilities 𝑝𝑖𝑗 𝑎 , are referred to as Model-based and involve

Value Iteration or Policy Iteration methods (policy iteration usually converges faster than
value iteration)

• Model-free methods search for Agent actions based on its growing understanding while
at the training phase, without prior knowledge of the transition probabilities of the
underlying Markov Decision Process. Sate-Action assignment algorithms are based on
observed (or Monte Carlo simulated) state trajectories of independent episodes (state
evolutions) of the environment

Steve Brunton, University of Washington – YouTube 2022
Model Based RL: https://www.youtube.com/watch?v=sJIFUTITfBc
Model Free RL: https://www.youtube.com/watch?v=0iqz4tcKN58

https://www.is.uni-freiburg.de/ressourcen/business-analytics/13_reinforcementlearning.pdf
https://www.youtube.com/watch?v=0iqz4tcKN58&t=5s
https://www.youtube.com/watch?v=0iqz4tcKN58&t=5s

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Direct Approximate Methods of Dynamic Programming (1/3)

• The Model-based Dynamic Programming Algorithms (Value Iteration & Policy Iteration)
assume knowledge of transition probabilities 𝑝𝑖𝑗(𝑎) and of the Immediate Expected Cost

at state 𝑖 and action 𝑎 = μ 𝑖

𝑐 𝑖, 𝑎 = σ𝑗=1
𝑁 𝑝𝑖𝑗(𝑎)𝑔 𝑖, 𝑎, 𝑗

estimated on the basis of observed costs of transitions 𝑖 → 𝑗 under an agent policy μ 𝑖

𝑔 𝑖, 𝑎, 𝑗 = 𝑔 𝑖, μ 𝑖 , 𝑗 ≜ 𝑔(𝑖, 𝑗)

• The Model-free Direct Approximate Dynamic Programming Methods determine in every
step the next transition 𝑖 → 𝑗 with agent action 𝑎 = μ 𝑖 with cost 𝑔(𝑖, 𝑎, 𝑗) and estimate
the Immediate Expected Cost 𝑐 𝑖, 𝑎 as the mean value of 𝑔(𝑖, 𝑎, 𝑗) for all next states 𝑗,
observed in independent trajectories that reached 𝑖 during the training phase

Model-free Direct Approximate Methods mainly apply to moderate size state-action
space problems with no a-priori knowledge of transition probabilities. They correspond
to model-based Dynamic Programming algorithms as follows:

➢ Value Iteration → Temporal-Difference Learning
➢ Policy Iteration → Q-Learning

• An on-policy estimates in every step (via measurements or Monte Carlo simulations) Costs-
to-Go 𝐽μ(𝑖) of environment states 𝑖 reached with actions of the current policy μ. The
frequency of state visits along trajectories resulting from μ provides estimates for 𝐽μ 𝑖 ,
consistent with Costs-to-Go recursive equations. Subsequent minimization iterations aim to
enforce the Bellman Equations, thus yielding 𝐽∗(𝑖) of the optimal policy:

Value Iteration → TD(0)-Learning (on-policy)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Direct Approximate Methods of Dynamic Programming (2/3)

Definitions: on-policy, off-policy

Actor-Critic TD-Learning Model: A.G. Barto, R.S. Sutton & C.W.
Anderson "Neuronlike adaptive elements that can solve
difficult learning control problems," IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-13, Sept. – Oct. 1983

• The off-policy compares choices of actions 𝑎 for a state 𝑖 of a trajectory, so that the agent
can greedily select in the next step an action 𝑎 that minimizes Q-Factors 𝑄 𝑖, 𝑎 , without
considering next states 𝑖 → 𝑗 if a policy is applied. The 𝑄 𝑖, 𝑎 and the Cost-to-Go 𝐽μ(𝑖) of an
intermediate policy μ are estimated by measurements (or Monte Carlo simulations) of up-
to-now defined trajectories. Future greedy decisions will result from updated Q-Factors:

Policy Iteration → Q-Learning (off-policy)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Direct Approximate Methods of Dynamic Programming (3/3)

Monte Carlo Simulation of System Trajectories
• Multiple scenarios of plausible system trajectories from an initial state 𝑖0 to a terminal

state 𝑖𝑛 → 𝑖𝑇 (𝑇 – Terminal) can be generated via Monte Carlo simulations of the Markov
Decision Process that fits our understanding of the environment

• For finite horizon cases {0,1, … , 𝐾} we define as an episode the instance of a full
trajectory 𝑖0 → 𝑖𝐾. Infinite horizon models are treated as limiting cases with large 𝐾

• The training process consists of Monte Carlo Sampling i.e. generation of multiple
independent trajectories and counting the number of visits to state 𝑖𝑛, maintained in a
table format. Trajectories may never visit states that are tough-to-reach or rarely visited;
thus, sampling may enforce seemingly undesirable transitions to a next state 𝑖𝑛+1 in
order to explore a wide range of the state-space (as in Simulated Annealing)

• The cost-to-go functions 𝐽μ 𝑖 are updated by adding the observed costs 𝑔(𝑖, 𝑗) of
transitions 𝑖 → 𝑗 under agent policy 𝑎 = μ 𝑖 . These may be assumed (or approximated)
from the problem specifications

Monte Carlo methods require a good understanding of the environment by user/developer
experience (due to lack of direct knowledge of transition probabilities), a moderate number
of observable environment states and a large number of independent trajectories for
reliable estimations. They may be simple but may require extensive storage for state-visit
tables and lengthy processing times to converge, thus they do not scale to handle
extremely large models (e.g. LLMs) that may suffer from the curse of dimensionality

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Approximate Algorithm TD(0) Learning (1/2)

Value Iteration → Temporal-Difference TD(0) Learning
• With repeated Monte Carlo simulations we sample 𝑀 trajectories of the environment

from 𝑖𝑛, 𝑛 < 𝑇 to a terminal state 𝑖𝑇 (we assume that 𝑖𝑇 = 0) using some policy μ (on-
policy). In each step we estimate Costs-to-Go 𝐽μ 𝑖𝑛 based on recursive equations:

𝐽μ 𝑖𝑛 = E 𝑔 𝑖𝑛, 𝑖𝑛+1 + γ𝐽μ 𝑖𝑛+1 = E ෍

𝑘=0

𝑇−𝑛−1

γ𝑘𝑔 𝑖𝑛+𝑘 , 𝑖𝑛+𝑘+1 = E[𝑐 𝑖𝑛]

• The 𝐽μ 𝑖𝑛 are approximated as ensemble averages of expected cost 𝐽 𝑖𝑛 along 𝑀 sub-

trajectories {𝑖𝑛, 𝑖𝑛+1, … , 𝑖𝑇}. A sub-trajectory cost is 𝑐 𝑖𝑛 ≜ σ𝑘=0
𝑇−𝑛−1 γ𝑘𝑔 𝑖𝑛+𝑘 , 𝑖𝑛+𝑘+1

and for 𝑀 independent trajectories the average 𝐽 𝑖𝑛 = E[𝑐 𝑖𝑛] is estimated as

𝐽 𝑖𝑛 = E[𝑐 𝑖𝑛] ≅
1

𝑀
෍

𝑀

𝑐 𝑖𝑛

• Costs 𝐽 𝑖𝑛 are evaluated using Robbins-Monro Successive Approximations in iterations
that correct estimations by updates in every visit at 𝑖𝑛 of a trajectory that drives 𝑖𝑛 → 𝑖𝑛+1

with learning rate η𝑛:

𝐽(𝑖𝑛) ≔ 𝐽(𝑖𝑛) + η𝑛 𝑔 𝑖𝑛, 𝑖𝑛+1 + γ𝐽 𝑖𝑛+1 − 𝐽 𝑖𝑛 = 𝐽 𝑖𝑛 + η𝑛𝑑𝑛

• The error 𝑑𝑛 ≜ 𝑔 𝑖𝑛, 𝑖𝑛+1 + γ𝐽 𝑖𝑛+1 − 𝐽 𝑖𝑛 , 𝑛 = 0,1, … , 𝑇 − 1 is referred to as the
Temporal Difference -TD, change in the expected cost in step (time) 𝑛 + 1 of a trajectory.
It drives 𝐽 𝑖𝑛 to convergence by minimizing 𝑑𝑛 in repetition of independent trajectories
under a policy μ

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Approximate Algorithm TD(0) Learning (2/2)

Value Iteration → Temporal-Difference TD(0) Learning

The cost-to-go update algorithm results from the recursive formula:

𝐽 𝑖𝑛 ≔ 𝐽 𝑖𝑛 + η𝑛 ෍

𝑘=0

𝑇−𝑛−1

γ𝑘𝑔 𝑖𝑛+𝑘, 𝑖𝑛+𝑘+1 − 𝐽 𝑖𝑛 = 𝐽 𝑖𝑛 + η𝑛 ෍

𝑘=0

𝑇−𝑛−1

γ𝑘𝑑𝑛+𝑘

The costs-to-go are approximated as ensemble averages of 𝑀 independent
trajectories that visit state 𝑖𝑛 at step 𝑛:

𝐽μ 𝑖𝑛 = E ෍

𝑘=0

𝑇−𝑛−1

γ𝑘𝑔 𝑖𝑛+𝑘 , 𝑖𝑛+𝑘+1 = E[𝑐 𝑖𝑛] ≅ 𝐽 𝑖𝑛 =
1

𝑀
෍

𝑀

𝑐 𝑖𝑛

where

𝑐 𝑖𝑛 ≜ ෍

𝑘=0

𝑇−𝑛−1

γ𝑘𝑔 𝑖𝑛+𝑘 , 𝑖𝑛+𝑘+1

The functions 𝐽 𝑖𝑛 are approximated by repeated visits to 𝑖𝑛 in observable Monte
Carlo trajectories of 𝑇 transitions

𝐽 𝑖𝑛 ≔ 𝐽 𝑖𝑛 + η𝑛 𝑐 𝑖𝑛 − 𝐽 𝑖𝑛

with initial conditions 𝐽 𝑖𝑛 = 0 and learning rate η𝑛 = Τ1
𝑛 , 𝑛 = 1,2, … , 𝑇

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Approximate Algorithm Q-Learning (1/2)

• Model-free Implementation: Determine off-policy behavior by processing of several
trajectories generated for plausible decision scenarios: Q-Learning

• Define 𝑠𝑛 ≜ 𝑖𝑛, 𝑎𝑛, 𝑗𝑛, 𝑔𝑛 at the 𝑛𝑡ℎ transition of a trajectory when the environment
state is guided to 𝑖𝑛 → 𝑖𝑛+1 = 𝑗𝑛 with the agent decision 𝑎𝑛 involving observed
transition cost 𝑔𝑛 = 𝑔(𝑖𝑛, 𝑎𝑛, 𝑗𝑛)

• Based on registering 𝑠𝑛 in alternate trajectories the Q-Learning algorithm guides the
system to the optimal policy as a variation of the policy iteration algorithm

• Precondition: States 𝑖𝑛 that form a trajectory must be fully observable

Review of Model Based Evaluation of 𝑄∗ 𝑖, 𝑎 with Successive Approximations
(Robins-Monro)

𝑄 𝑖, 𝑎 ≔ 1 − η 𝑄 𝑖, 𝑎 + η ෍

𝑗=1

𝑁

𝑝𝑖𝑗 𝑎 𝑔 𝑖, 𝑎, 𝑗 + γ min
𝑏∈𝒜𝑗

𝑄 𝑗, 𝑏 ∀ 𝑖, 𝑎

The limit 𝑄∗ 𝑖, 𝑎 of the above successive approximations determines the optimal
policy π as:

μ* 𝑖 = arg min
𝑎∈𝒜𝑖

𝑄∗ 𝑖, 𝑎 for 𝑖 = 1,2, … , 𝑁

Stochastic Model-free Implementation via Monte Carlo Trajectory Sampling
• To avoid knowledge of 𝑝𝑖𝑗(𝑎) we sample a trajectory from initial state 𝑖0 to 𝑖𝑛 via Monte

Carlo simulation based on of the environment behavior and using a behavior policy

• In step 𝑛 the agent estimates Q-factors and the expected costs-to-go 𝐽𝑛(𝑗) for states 𝑗
resulting from a greedy estimation policy (different from the behavior policy that sampled
the environment state trajectory, off-policy)

• The average in Q-factor evaluations, instead of considering next state 𝑗 that requires
transition probabilities 𝑝𝑖𝑗(𝑎) is approximated via observing targets and computing the

average of multiple independent trajectories

• For each state-action pair 𝑖, 𝑎 = 𝑖𝑛, 𝑎𝑛 visited in a trajectory, its Q-factor is updated at
the next step (time) 𝑄𝑛 𝑖, 𝑎 → 𝑄𝑛+1 𝑖, 𝑎 :

➢ 𝑄𝑛+1 𝑖, 𝑎 = 1 − η𝑛 𝑄𝑛 𝑖, 𝑎 + η𝑛[𝑔 𝑖, 𝑎, 𝑗 + γ𝐽𝑛(𝑗)]
➢ 𝐽𝑛 𝑗 = min

𝑏∈𝒜𝑗

𝑄𝑛(𝑗, 𝑏) where j= 𝑖𝑛+1 is a follow-up state in the trajectory

➢ 𝑄𝑛+1 𝑖, 𝑎 = 𝑄𝑛 𝑖, 𝑎 for all other pairs 𝑖, 𝑎 ≠ 𝑖𝑛, 𝑎𝑛

➢ After several rounds 𝑄𝑛 𝑖, 𝑎 → 𝑄∗(𝑖, 𝑎)
➢ The learning parameter η𝑛 is decreasing on 𝑛, e.g. η𝑛 = Τ𝛼 𝛽 + 𝑛 𝛼, 𝛽 > 0

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Approximate Algorithm Q-Learning (2/2)

To avoid trapping of states within trajectories formed by greedy decisions (exploitation),
we need to consider multiple trajectories of varying initial states that visit a wide range of
states (exploration). The range of search can widen by enforcing greedy agent actions with
probability 𝟏 − 𝝐 and other choices with probability 𝝐

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Distributed Implementation of Reinforcement Learning

Cooperative Optimization Model via Multi-Agent Reinforcement Learning - MARL

Michael Littman, 1994 https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf

• Dynamic Programming as a cooperative zero-sum game among autonomous agents

• Agents act towards optimal policies that may affect autonomous cooperators of a
Markov (Stochastic) Game

• Distributed Q-Learning Algorithm with asynchronous updates among agents

• Definition of Q-factors as minimax Q-factors to model interacting decisions of
cooperating agents.

• Estimation of minimax Q-factors, may be accomplished by repeated Linear Programs
but with significant processing overhead. In practice and for specific applications it can
be simplified by using fast, scalable heuristics

A Succes Story: Large scale application with ~𝟖𝟑, 𝟐𝟎𝟎 agents/routers
collaborating in the Border Gateway Protocol (BGP) to enable global routing
among the ~𝟏, 𝟐𝟎𝟎, 𝟎𝟎𝟎 advertised networks of the current (2025) Internet

https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (1/7)

https://www.netmode.ntua.gr/wp-content/uploads/2024/10/NetMan_Internet_Routing_BGP_Academic_Commercial_ISP_2024_10_07.pdf

https://www.netmode.ntua.gr/wp-content/uploads/2024/10/NetMan_Internet_Routing_BGP_Academic_Commercial_ISP_2024_10_07.pdf

V. Maglaris, “Network Management – Intelligent Networks” Lectures, NTUA-2024
https://www.netmode.ntua.gr/wp-

content/uploads/2024/10/NetMan_Internet_Routing_BGP_Academic_Commercial_ISP_2024_10_07.pdf

The inter-domain routing tables are stored in electronic fast memories of Border Gateways
and comply by the Border Gateway Protocol - BGP standards (RFC 4271). Their (hopefully)
collaborative management relies on 82,590 Autonomous Domain Administrators
• The Border Routers (Gateways) of an AS announce (via BGP signaling) to the 𝟖𝟐, 𝟓𝟗𝟎 Peer

AS’s of the Internet all 𝟏, 𝟐𝟎𝟎, 𝟎𝟎𝟎 networks – potential destinations under its control or
are reachable through them, with cost estimates of end-to-end inter-AS paths

• The Border Gateways estimate autonomously optimal routes to all 1,200,000 destination
networks based on administrator preferences (politics) and update routing choices in case
of topology changes

• The distributed algorithm that estimates “optimal” paths to the 1,2𝟎𝟎, 𝟎𝟎𝟎 potential
destinations, conveys to BGP peers reachability information and interconnection costs to its
immediate neighboring peers. Path cost are estimated via the Bellman – Ford Algorithm

The global Internet consists (9/2024) of ~𝟏, 𝟐𝟎𝟎, 𝟎𝟎𝟎 reachable networks (e.g. the NTUA
Local Network, IP: 147.102.0.0/16), organized in ~𝟖𝟐, 𝟓𝟗𝟎 Domains (Autonomous
Systems, AS) e.g. GRNET/ΕΔΥΤΕ, Autonomous System Number – ASN: 5408

Intra-domain routing is centrally controlled via Interior Gateway Protocols – IGP (e.g.
OSPF). Among the 𝟖𝟐, 𝟓𝟗𝟎 AS’s, Inter-domain routing is controlled in a distributed mode
via Routing Tables in Border Gateways (Border Routers). These maintain path suggestions
to all ~𝟏, 𝟐𝟎𝟎, 𝟎𝟎𝟎 reachable networks of the Internet

https://www.netmode.ntua.gr/wp-content/uploads/2024/10/NetMan_Internet_Routing_BGP_Academic_Commercial_ISP_2024_10_07.pdf
https://www.netmode.ntua.gr/wp-content/uploads/2024/10/NetMan_Internet_Routing_BGP_Academic_Commercial_ISP_2024_10_07.pdf

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (2/7)

BGP Distance Vector Algorithm (Bellman – Ford)

• The Border Gateways of an AS identify shortest paths of transit and final AS’s
to all advertised destination networks via a dynamic programming version

• The algorithm requires measurements of costs (weights) of direct Inter AS
Interfaces (links) and estimates of distance vectors to all networks, potential
destinations of the Internet (~𝟏, 𝟐𝟎𝟎, 𝟎𝟎𝟎 - 9/2024)

• It is based on distributed Bellman - Ford dynamic programming and makes use
of BGP Announcements among all ~𝟖𝟐, 𝟓𝟗𝟎 AS’s of the global Internet that
convey routing information and cost vectors

• Within the context of Reinforcement Learning, BGP is a distributed version of
Dynamic Programming, a cooperative game of 𝟖𝟐, 𝟓𝟗𝟎 Autonomous Agents

BGP is a major enabler for the success story of the Internet

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (3/7)

Example of a Network (Graph) with 𝑵 = 𝟔 Nodes (Autonomous Systems)

• The graph nodes represent AS’s of a very limited scope of the Internet

• Source and destination networks are imbedded within the graph nodes

• Links (graph edges) depicted in the figure refer to both directions based on
measurements of adjacent domain administrators

• In this example shortest path trees are evaluated from all nodes
1 , 2 , 3 , 4 , {5} to the root node {6}

• The root role as destination was arbitrarily chosen. The algorithm holds
for any choice of node role, as destination or source

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (4/7)

Evaluation of Shortest Path Tree Rooted in {𝟔}
Q-Learning (Off-policy) with Asynchronous Updates

{𝑖} State: Node (AS) 𝑖 = 1,2, … , 𝑁 (𝑁 = 6, in the example, over 82,000 in the Internet)

𝑃(𝑛)(𝑖) Action: Next node in a path (trajectory) from {𝑖} to {6}, εtransit or final in Iteration 𝑛

𝑑𝑖𝑗 Cost (weight) of edgeς (𝑖, 𝑗) set by the routing policy of autonomous agent {𝑖} and/or
via measurements by directly connected neighbors 𝑖, 𝑗 . If 𝑑𝑖𝑗 = 𝑐, ∀(𝑖, 𝑗) ⇒ min hop
routing

𝐿(𝑛)(𝑖) Labels, Q-Factors 𝐿(𝑛)(𝑖) ≜ 𝑄(𝑖, 𝑃 𝑛 𝑖) : Minimum cost from {𝑖} to {6} in the
𝑛𝑡ℎ iteration (asynchronously updated according the most recent estimates and the
update order of Q-Factors). The trajectories αare path choices from {𝑖} to 6 in
every iteration

The Bellman - Ford Algorithm
• Initialize 𝐿𝑖

0
= ∞ ∀𝑖 ≠ 6, 𝐿6

𝑛
= 0 ∀𝑛,

• In every iteration 𝑛 = 1,2, … and ∀𝑖 we asynchronously update minimum cost estimates for
paths from the current state to the destination 6 based on Bellman’s recursive equations
to evaluate Q-Factors 𝐿𝑗

𝑛
for all directly connected neighbors 𝑗 of 𝑖:

𝐿𝑖
𝑛+1

= min
𝑗

𝐿𝑗
𝑛

+ 𝑑𝑖𝑗 ∀𝑖 ≠ 6

• If 𝐿𝑖
𝑛+1

= 𝐿𝑖
𝑛

 ∀𝑖 stop and determine optimal paths as a Shortest Path Tree rooted to
{6} according to actions 𝑃(𝑛)(𝑖)

• Algorithm complexity: Ο(𝑁3)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (5/7)

Execution of Algorithm for Destination{𝟔}

The speed of
convergence
depends on
the update
order of
Node Labels

17

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (6/7)

Example of Path Reachability Learning - Advertisement of Network 135.207.0.0/16
(Timothy G. Griffin, AT&T Research, Paris 2002)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (7/7)

BGP Routes to ntua.gr - 147.102.0.0/16 (8/4/2025)

https://stat.ripe.net/widget/bgplay

NTUA (AS: 3323)
GRNET (AS: 5408)
GÉANT (AS: 21320)

GÉANT Internet Feeds
• LEVEL3 (AS: 3356)
• COGENT 174 (AS: 174)
• NORDUnet (AS: 2603)

https://stat.ripe.net/widget/bgplay

	Slide 1
	Slide 2: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Summary of Dynamic Programming Definitions (1/2) D. P. Bertsekas & J. Tsitsiklis, “Neuro-Dynamic Programming,” Athena MA 1996 R. S. Sutton & A. G. Barto, “Reinforcement Learning,” MIT Press
	Slide 3: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Summary of Dynamic Programming Definitions (2/2)
	Slide 4: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Direct Approximate Methods of Dynamic Programming (1/3)
	Slide 5: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Direct Approximate Methods of Dynamic Programming (2/3) Definitions: on-policy, off-policy
	Slide 6: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Direct Approximate Methods of Dynamic Programming (3/3)
	Slide 7: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Approximate Algorithm TD(0) Learning (1/2)
	Slide 8: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Approximate Algorithm TD(0) Learning (2/2)
	Slide 9: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Approximate Algorithm Q-Learning (1/2)
	Slide 10
	Slide 11: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Distributed Implementation of Reinforcement Learning
	Slide 12: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (1/7)
	Slide 13: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (2/7)
	Slide 14: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (3/7)
	Slide 15: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (4/7)
	Slide 16: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (5/7) Execution of Algorithm for Destinationopen brace bold 6 close brace
	Slide 17
	Slide 18: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: Internet Border Gateway Protocol (BGP) - RFC 4271 (7/7) BGP Routes to ntua.gr - 147.102.0.0/16 (8/4/2025)

