
Prof. Vasilis Maglaris
maglaris@netmode.ntua.gr

www.netmode.ntua.gr

Room 002, New ECE Building

Tuesday April 8, 2025

STOCHASTIC PROCESSES & OPTIMIZATION IN
MACHINE LEARNING

Reinforcement Learning - Dynamic Programming:
1. Markov Decision Processes

2. Bellman’s Optimality Criterion
3. Policy Iteration Algorithm
4. Value Iteration Algorithm

NTUA - National Technical University of Athens, DSML - Data Science & Machine Learning Graduate Program

mailto:maglaris@netmode.ntua.gr
http://www.netmode.ntua.gr/

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Reinforcement Learning - Markov Decision Processes

Supervised Learning - Teacher
Machine Learning (ML) configuration tuning in training phase assisted by external supervisor
(teacher), aware of the desired output for all labeled examples in a pre-existing training
dataset, tested for generalization when the system is fed by new test data

Unsupervised Learning
Self-tuning of ML configuration, based on properties of a pre-existing unlabeled training
examples, tested for generalization when the system is fed by new test data

Reinforcement Learning (RL)
(Andrew Barto & Richard Sutton, Turing Awards 5/3/2025)

• The actions of an agent in a horizon of 𝐾 steps may control the evolution of the states of the
environment with cost/reward in current step and anticipated in future state trajectories

• RL involves policy planning of states and actions of the agent towards medium-long term
goals via interactive learning scenarios

• RL theoretical models: Dynamic Programming (DP), Markov Decision Processes (MDP)
• The training dataset may be dynamically (on-line) specified/updated to reflect decisions of

the agent on the state evolution (no pre-existence of a training dataset is required)

• Training examples in Supervised & Unsupervised Learning are
usually modeled as independent random variables/vectors in
sufficiently large training subsets of the sample space

• In Reinforcement Learning system configuration is usually
based on scenarios of dynamic evolution of Markov
environment states, that depend on control actions of an
Agent associated with a certain cost/reward

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Reinforcement Learning - Markov Decision Processes (1/2)

Markov Decision Processes (MDP) Model: State, Action, Cost, Policy
• Finite Sample Space 𝒳 of discrete environment states in steps 𝑛 = 0,1,2, … , 𝐾

The Random Variable 𝑋𝑛 ∈ 𝒳 assumes discrete values 𝑋𝑛 = 𝑖, 1 ≤ 𝑖 ≤ 𝑁

• Finite Sample Space 𝒜𝑖 of discrete actions of the agent if the environment state is 𝑋𝑛 = 𝑖
The Random Variable 𝐴𝑛 ∈ 𝒜𝑖 of action at step 𝑛 assumes values 𝑎𝑖𝑘 when 𝑋𝑛 = 𝑖

• Environment State Transitions: Markov 𝑝𝑖𝑗(𝑎) from 𝑖 to 𝑗 with the agent enforcing action 𝑎

in transition steps 𝑛 = 0,1,2, … , 𝐾
𝑝𝑖𝑗 𝑎 = 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖, 𝐴𝑛 = 𝑎 , 𝑝𝑖𝑗 𝑎 ≥ 0, σ𝑗 𝑝𝑖𝑗 𝑎 = 1

• The observed cost of a state transition (𝑋𝑛= 𝑖) → (𝑋𝑛+1= 𝑗) with agent action 𝑎𝑖𝑘 is
𝑔 𝑖, 𝑎𝑖𝑘 , 𝑗 or, anticipated 𝑛 steps ahead, γ𝑛𝑔 𝑖, 𝑎𝑖𝑘, 𝑗 with a discount factor 0 ≤ γ < 1

✓ If γ = 0 the agent is not concerned for the longer-term impact of current action (myopic)
✓ As γ → 1 the agent actions are determined by their impact on the environment evolution

• A policy π = {μ0, μ1, … , μ𝑛, … , μ𝐾−1} consists of functions μ𝑛 that map states 𝑋𝑛 = 𝑖 at step
𝑛 into agent action 𝐴𝑛 = 𝑎

μ𝑛(𝑖) ∈ 𝒜𝑖 for all states 𝑖 ∈ 𝒳 (π admissible policies)

If μ𝑛 𝑖 = μ 𝑖 for all steps 𝑛, policy π = {μ, μ, … } is stationary and
transitions 𝑝𝑖𝑗 𝑎 identify a stationary Markov Chain (𝑋𝑛= 𝑖) → (𝑋𝑛+1= 𝑗)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Reinforcement Learning - Markov Decision Processes (2/2)

Policy Optimization
The total cost is estimated over possible trajectories in finite steps 𝐾 (Finite-Horizon) of
repeated sample episodes (or as 𝐾 → ∞ in Infinite-Horizon scenarios) summing the observed
costs of Markov Transitions 𝑋𝑛 → 𝑋𝑛+1 under action μ𝑛(𝑋𝑛):

𝑔 𝑋𝑛, μ𝑛(𝑋𝑛), 𝑋𝑛+1

The Total Discounted Expected Cost-to-Go for finite-horizon 𝐾 and policy π = {μ0, μ1, … , μ𝐾−1}
from an initial state 𝑋0 = 𝑖 and with discount factor γ is:

𝐽π 𝑖 = E

𝑛=0

𝐾

γ𝑛𝑔 𝑋𝑛, μ𝑛(𝑋𝑛), 𝑋𝑛+1 |𝑋0 = 𝑖

where the expectation refers to Markov Chain trajectory frequencies from 𝑋0 = 𝑖 in 𝐾 steps

An optimal policy π minimizes 𝐽π 𝑖 : 𝐽∗ 𝑖 ≜ min
π

𝐽π 𝑖

The optimal policy is greedy in the sense that the agent minimizes the Expected Cost-to-Go
𝐽π 𝑖 from initial state 𝑋0 = 𝑖 without considering better alternatives in the future as the
environment proceeds to a trajectory identified by π

If the policy space is confined to stationary decisions, π = {μ, μ, … } independent
of the transition step 𝑛, then 𝐽π 𝑖 ≜ 𝐽μ 𝑖 and the problem is to search for the
function μ(𝑋𝑛) that minimizes 𝐽μ 𝑖 = 𝐽∗ 𝑖 for all initial states 𝑋0 = 𝑖

Note: Optimization objectives other than Total Discounted Expected Cost-to-Go include the Expected
Average Cost per step in Infinite Horizon with no discount (Sheldon Ross, “Applied Probability Models
with Optimization”, Dover, 1992)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Principle of Optimality (Bellman 1957) – Finite Horizon Problem

Let an MDP with transition costs 𝑔𝑛 𝑋𝑛, μ𝑛(𝑋𝑛), 𝑋𝑛+1 ≜ γ𝑛𝑔 𝑋𝑛, μ𝑛(𝑋𝑛), 𝑋𝑛+1 , at step
𝑛 < 𝐾 and terminal cost 𝑔𝐾(𝑋𝐾). The Expected Cost-to-Go in 𝐾 step expected trajectories
{𝑋0, 𝑋1, … , 𝑋𝐾} is:

𝐽0 𝑋0 = E 𝑔𝐾 𝑋𝐾 +

𝑛=0

𝐾−1

𝑔𝑛 𝑋𝑛, μ𝑘(𝑋𝑛), 𝑋𝑛+1 | 𝑋0

An optimal policy π∗ = {μ0
∗ , μ1

∗ , μ2
∗ , … , μ𝐾−1

∗ } leads the environment in 𝑛 steps, 𝑛 < 𝐾, to
possible state sub-trajectories {𝑋0, 𝑋1, … , 𝑋𝑛}. The Expected Cost-to-Go for the tail sub-
trajectory {𝑋𝑛+1, 𝑋𝑛+2,…, 𝑋𝐾} is:

𝐽𝑛 𝑋𝑛 = E 𝑔𝐾 𝑋𝐾 +

𝑘=𝑛

𝐾−1

𝑔𝑘 𝑋𝑘 , μ𝑘(𝑋𝑘), 𝑋𝑘+1 | 𝑋𝑛

Then the truncated policy {μ𝑛
∗ , μ𝑛+1

∗ , … , μ𝐾−1
∗ } is optimal for the tail-process (subproblem)

{𝑋𝑛+1, 𝑋𝑛+2,…, 𝑋𝐾} with initial state 𝑋𝑛 (Principle of Optimality)

Justification: if the truncated policy were not optimal, then the overall optimal policy π∗
would lead the environment up to state 𝑋𝑛. The agent could subsequently change the policy
for the remainder steps 𝑛 + 1, 𝑛 + 2, … , 𝐾 , thus yield lower total trajectory cost than
anticipated using π∗

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming (Bellman 1957) – Finite Horizon Problem

The Bellman Principle of Optimality leads to Dynamic Programming formulation for
determining an Optimal Policy π∗ = {μ0

∗ , μ1
∗ , μ2

∗ , … , μ𝐾−1
∗ } in three stages by reversing the

state transition order: 𝐾 → 𝐾 − 1 → 𝐾 − 2 → ⋯ → 1 → 0

➢ Determine the optimal policy μ𝐾−1
∗ for the final step 𝑋𝐾−1 → 𝑋𝐾 for all possible 𝑋𝐾

➢ For the tail subproblem 𝑋𝐾−2 → 𝑋𝐾−1 → 𝑋𝐾 deterime μ𝐾−2
∗ without changing μ𝐾−1

∗

➢ Repeat until reaching 𝑋0. μ0
∗ , completing the search for the overall optimal policy π∗

Dynamic Programming Algorithm

1. Start with 𝐽𝐾 𝑋𝐾 = 𝑔𝐾(𝑋𝐾) for all terminal states 𝑋𝐾

2. For 𝑛 = {𝐾 − 1, 𝐾 − 2, … , 1, 0} evaluate recursively the tail Expected Cost-to-Go 𝐽𝑛 𝑋𝑛

for all intermediate states 𝑋𝑛 and optimal policies μ𝑛(𝑋𝑛) of the tail subproblems using
the recursive formula of greedy decisions:

𝐽𝑛 𝑋𝑛 = min
μ𝑛(𝑋𝑛)

E 𝑔𝑛 𝑋𝑛, μ𝑛(𝑋𝑛), 𝑋𝑛+1 + 𝐽𝑛+1 𝑋𝑛+1

The average in the formula refers to all possible states 𝑋𝑛+1

3. Final determination of 𝐽0 𝑋0 for all initial states 𝑋0 and actions μ0
∗ that complement

identification of optimal policies π∗ = {μ0
∗ , μ1

∗ , … , μ𝐾−1
∗ } that satisfy the recursive formula

4. For stationary policies π = {μ, μ, … } the recursive formula is simplified by letting μ𝑛 = μ

Let an MDP of fimite states 𝑋𝑛 ∈ {1,2, … , 𝑁}, stationary policies π, discount γ, transition costs
𝑔𝑛 𝑋𝑛, μ(𝑋𝑛), 𝑋𝑛+1 ≜ γ𝑛𝑔 𝑋𝑛, μ(𝑋𝑛), 𝑋𝑛+1 and starting from initial state 𝑋0

Find a stationary policy π minimizing the Expected Cost in Infinite Horizon 𝑛 → ∞ trajectories

• The recursive dynamic programming formula is re-formulated by reversing the trajectory
evolution, starting from initial states 𝑋0 over a finite horizon n ≤ 𝐾:
𝐽𝑛+1 𝑋0 = min

μ
E 𝑔 𝑋0, μ(𝑋0), 𝑋1 + γ𝐽𝑛(𝑋1) |𝑋0 with initial condition 𝐽0 𝑋 = 0, ∀𝑋

• Over infinite horizon and 𝑋0 = 𝑖 the optimal policy π yields costs 𝐽∗ 𝑖 = lim
𝐾→∞

𝐽𝐾(𝑖) , ∀𝑖 ⇒

𝐽∗ 𝑖 = min
π

E 𝑔 𝑖, μ(𝑖), 𝑋1 + γ𝐽∗(𝑋1) |𝑋0 = 𝑖

• Define 𝑐 𝑖, μ 𝑖 the Immediate Expected Cost of environment state 𝑋0 = 𝑖 and action μ 𝑖 :

𝑐 𝑖, μ 𝑖 ≜ E 𝑔 𝑖, μ 𝑖 , 𝑋1 = 𝑗 |𝑋0 = 𝑖 =

𝑗=1

𝑁

𝑝𝑖𝑗(𝜇 𝑖)𝑔 𝑖, μ 𝑖 , 𝑗

The average term refers to possible states 𝑋1 resulting from 𝑋0 in one-step transitions

• The optimal μ yields one-step transition cost E 𝐽∗ 𝑋1 𝑋0 = 𝑖 = σ𝑗=1
𝑁 𝑝𝑖𝑗(𝜇)𝐽∗(𝑗)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Optimality Equations - Infinite Horizon Problem, Stationary Policy

We obtain 𝑁 equations referred to as Bellman’s Optimality Equations:

𝐽∗ 𝑖 = min
μ

𝑐 𝑖, μ 𝑖 + γ

𝑗=1

𝑁

𝑝𝑖𝑗(𝜇(𝑖))𝐽∗(𝑗) , 𝑖 = 1,2, … , 𝑁

These 𝑁 equations determine 𝐽∗ 𝑖 via Policy Iteration or Value Iteration algorithms
Caution: We assume knowledge of 𝑝𝑖𝑗(𝑎) in what is referred to as Model-based learning

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Model-based Learning: Policy Iteration (1/2)

Note: In a dual formulation cost minimization is translated as reward maximization, costs
𝑐 𝑖, 𝑎 are defined as rewards 𝑟 𝑖, 𝑎 , the costs-to-go 𝐽μ 𝑖 are referred to as Value
Functions 𝑉μ 𝑖 , and the 𝑸-factors are:

𝑄μ 𝑖, 𝑎 ≜ 𝑟 𝑖, 𝑎 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗(𝑎) 𝑉μ 𝑗 and 𝑄μ∗

𝑖, μ∗(𝑖) = max
𝑎∈𝒜𝑖

𝑄μ∗
𝑖, 𝑎

𝑸-factors
• A stationary policy π = {μ, μ, … } leads to costs-to-go 𝐽μ 𝑖 , ∀𝑖 ∈ 𝒳 (the environment state

space) with agent action 𝑎 = μ(𝑖) ∈ 𝒜𝑖

• At every step and for all 𝑖, 𝑎 pairs and tail-policies π = {μ, μ, … } define the 𝑸-factors
𝑄μ 𝑖, 𝑎 as a comparison metric of alternative direct agent actions 𝑎 ∈ 𝒜𝑖 that would lead
the environment from present state 𝑖 to state 𝑗 with expected costs-to-go 𝐽μ 𝑗 , ∀𝑗 ∈ 𝒳

𝑄μ 𝑖, 𝑎 ≜ 𝑐 𝑖, 𝑎 + γ

𝑗=1

𝑁

𝑝𝑖𝑗(𝑎) 𝐽μ 𝑗

• A stationary policy π = {μ, μ, … } satisfies the greedy conditions regarding the expected
costs-to-go 𝐽μ 𝑗 for the remaining transitions, if the agent at every step and ∀𝑖 ∈
𝒳selects 𝑎 = μ(𝑖) so that

𝑄μ 𝑖, μ(𝑖) = min
𝑎∈𝒜𝑖

𝑄μ 𝑖, 𝑎 , ∀𝑖 ∈ 𝒳

• A policy π∗ = {μ∗, μ∗, … } is optimal for all steps if it satisfies the greedy conditions τof
dynamic programming:

𝑄μ∗
𝑖, μ∗(𝑖) = min

𝑎∈𝒜𝑖

𝑄μ∗
𝑖, 𝑎

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Model-based Learning: Policy Iteration (2/2)

Actor - Critic Architecture
(A.G. Barto, R.S. Sutton & C.W. Anderson, "Neuronlike adaptive elements that can solve difficult learning
control problems," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, Sept. – Oct. 1983)

Iterations 𝑛 = 0,1,2, … of steps until convergence: μ𝑛+1 𝑖 = μ𝑛 𝑖 , 𝐽μ𝑛+1 𝑖 = 𝐽μ𝑛 𝑖 , ∀𝑖

Step 1. Policy Evaluation (the critic evaluates the agent actions):
Based on current policy π𝑛 = {μ𝑛, μ𝑛, … } evaluate costs-to-go:

𝐽μ𝑛 𝑖 = 𝑐 𝑖, μ𝑛 𝑖 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗(μ𝑛 𝑖) 𝐽μ𝑛 𝑗 for ∀𝑖

For ∀𝑖 and ∀𝑎 ∈ 𝒜𝑖 evaluate Q-factors: 𝑄μ𝑛 𝑖, 𝑎 = 𝑐 𝑖, 𝑎 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗(𝑎) 𝐽μ𝑛 𝑗

Step 2. Policy Improvement (the actor guides the agent decisions):
Policy π𝑛 is updated to π𝑛+1 by updating μ𝑛+1 𝑖 = arg min

𝑎∈𝒜𝑖

𝑄μ𝑛 𝑖, 𝑎 for 𝑖 = 1,2, … , 𝑁

arg min
𝑥

𝑓(𝑥)

The value of independent variable 𝑥 for which 𝑓(𝑥) reaches a minimum

The algorithm converges to an optimal policy in finite steps 𝑛 due to finite state-space
𝑁 and finite action space

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Model-based Learning: Value Iteration Algorithm

Estimation of Cost-to-Go via Successive Approximations 𝐽𝑛 𝑖 → 𝐽𝑛+1 𝑖

• Start with arbitrary initial values for 𝐽0 𝑖 , ∀𝑖
• Iterate 𝑛 → 𝑛 + 1 until acceptable convergence (In theory 𝑛 → ∞) via Bellman’s equations
• Final evaluation of (sub)optimal Costs-to-Go:

𝐽∗ 𝑖 = lim
𝑛→∞

𝐽𝑛 𝑖 , 𝑄∗ 𝑖, 𝑎 = 𝑐 𝑖, 𝑎 + γ σ𝑗=1
𝑁 𝑝𝑖𝑗(𝑎) 𝐽∗ 𝑗

and determination of optimal policy: μ∗ 𝑖 = arg min
𝑎∈𝒜𝑖

𝑄∗ 𝑖, 𝑎 για 𝑖 = 1,2, … , 𝑁

• The Value Iteration algorithm, if it
converges in an acceptable run-
time, avoids evaluations of Q-
factor and policy updates at every
step unlike Policy Iteration

• Assumes (as Policy Iteration) a
priori knowledge of 𝑝𝑖𝑗(𝑎)

(Model-based Learning)
• Alternatively Model-free Learning

methods search for optimal
policies without prior knowledge
of 𝑝𝑖𝑗(𝑎), e.g. via Monte Carlo

trajectory simulations, algorithms
for Q-Learning estimation…

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming Example: The Stagecoach Problem

Determine the least cost path (route) from Node 𝐴 to Node 𝐽 via the directional
graph in the figure, with directions pointing L→ R
Representative Edge Costs: 𝐴 → 𝐵: 2, 𝐵 → 𝐴: ∞

𝐵 → 𝐹: 4, 𝐹 → 𝐵: ∞
Representative Path Cost: Path {𝐴, 𝐵, 𝐹, 𝐼, 𝐽}: 2 + 4 + 3 + 4 = 13
Environment State: Node under consideration {𝐴, 𝐵, … , 𝐽}
Agent Action: Next node in the path {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑠𝑡𝑎𝑖𝑔ℎ𝑡}

Recurive Evaluation of 𝑸-Factors (the best choices in bold):
𝑸 𝑯, 𝒅𝒐𝒘𝒏 = 𝟑, 𝑸 𝑰, 𝒖𝒑 = 𝟒
𝑸 𝑬, 𝒔𝒕𝒂𝒊𝒈𝒉𝒕 = 𝟏 + 𝟑 = 𝟒, 𝑄 𝐸, 𝑑𝑜𝑤𝑛 = 4 + 4 = 8
𝑄 𝐹, 𝑢𝑝 = 6 + 3 = 9, 𝑸 𝑭, 𝒅𝒐𝒘𝒏 = 𝟑 + 𝟒 = 𝟕
…..

Optimal Path Cost 11:
𝐴, 𝐶, 𝐸, 𝐻, 𝐽 , 𝐴, 𝐷, 𝐸, 𝐻, 𝐽 , {𝐴, 𝐷, 𝐹, 𝐼, 𝐽}

Dynamic Programming Algorithms (Bellman-Ford) support global Internet Routing (Border Gateway Protocols - BGP)
specified by the ~78,000 Autonomous Systems (AS) of the Internet to the ~1,000,000 known network destinations

Direction of Edges
L (Left) R (Right)

	Slide 1
	Slide 2: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Reinforcement Learning - Markov Decision Processes
	Slide 3: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Reinforcement Learning - Markov Decision Processes (1/2)
	Slide 4: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Reinforcement Learning - Markov Decision Processes (2/2)
	Slide 5: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Principle of Optimality (Bellman 1957) – Finite Horizon Problem
	Slide 6: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming (Bellman 1957) – Finite Horizon Problem
	Slide 7: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Optimality Equations - Infinite Horizon Problem, Stationary Policy
	Slide 8: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Model-based Learning: Policy Iteration (1/2)
	Slide 9: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Model-based Learning: Policy Iteration (2/2)
	Slide 10: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Model-based Learning: Value Iteration Algorithm
	Slide 11: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: The Stagecoach Problem

