

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Reinforcement Learning - Dynamic Programming: 1. Markov Decision Processes 2. Bellman's Optimality Criterion **3. Policy Iteration Algorithm 4. Value Iteration Algorithm Prof.** Vasilis Maglaris maglaris@netmode.ntua.gr www.netmode.ntua.gr Room 002, New ECE Building Tuesday April 8, 2025

NTUA - National Technical University of Athens, DSML - Data Science & Machine Learning Graduate Program

Reinforcement Learning - Markov Decision Processes Supervised Learning - Teacher

Machine Learning (ML) configuration tuning in training phase assisted by *external supervisor* (teacher), aware of the desired output for all *labeled* examples in a *pre-existing* training dataset, tested for generalization when the system is fed by new test data

Unsupervised Learning

Self-tuning of ML configuration, based on properties of a *pre-existing unlabeled* training examples, tested for generalization when the system is fed by new test data

Reinforcement Learning (RL)

(Andrew Barto & Richard Sutton, Turing Awards 5/3/2025)

- The *actions* of an *agent* in a horizon of K steps may control the evolution of the *states* of the *environment* with cost/reward in current step and anticipated in future state trajectories
- RL involves *policy planning* of *states* and *actions* of the *agent* towards medium-long term goals via *interactive* learning scenarios
- RL theoretical models: *Dynamic Programming* (*DP*), *Markov Decision Processes* (*MDP*)
- The training dataset may be dynamically (on-line) specified/updated to reflect decisions of the agent on the state evolution (no pre-existence of a training dataset is required)

- Training examples in *Supervised* & *Unsupervised Learning* are usually modeled as independent random variables/vectors in sufficiently large training subsets of the sample space
- In *Reinforcement Learning* system configuration is usually based on scenarios of dynamic evolution of *Markov* environment states, that depend on control actions of an *Agent* associated with a certain *cost/reward*

Reinforcement Learning - Markov Decision Processes (1/2)

Markov Decision Processes (MDP) Model: State, Action, Cost, Policy

- Finite Sample Space \mathcal{X} of discrete environment *states* in steps n = 0, 1, 2, ..., KThe *Random Variable* $X_n \in \mathcal{X}$ assumes discrete values $X_n = i, 1 \le i \le N$
- Finite Sample Space A_i of discrete *actions* of the *agent* if the environment state is $X_n = i$ The *Random Variable* $A_n \in A_i$ of action at step n assumes values a_{ik} when $X_n = i$
- Environment State Transitions: *Markov* $p_{ij}(a)$ from *i* to *j* with the *agent* enforcing action *a* in transition steps n = 0, 1, 2, ..., K $p_{ij}(a) = P(X_{n+1} = j | X_n = i, A_n = a), p_{ij}(a) \ge 0, \sum_i p_{ij}(a) = 1$
- The **observed cost** of a state transition $(X_n = i) \rightarrow (X_{n+1} = j)$ with agent **action** a_{ik} is $g(i, a_{ik}, j)$ or, anticipated *n* **steps ahead**, $\gamma^n g(i, a_{ik}, j)$ with a **discount factor** $0 \le \gamma < 1$

✓ If $\gamma = 0$ the *agent* is not concerned for the longer-term impact of current action (*myopic*) ✓ As $\gamma \rightarrow 1$ the *agent* actions are determined by their impact on the environment evolution

A *policy* π = {μ₀, μ₁, ..., μ_n, ..., μ_{K-1}} consists of functions μ_n that map *states* X_n = i at step n into *agent* action A_n = a

 $\mu_n(i) \in \mathcal{A}_i$ for all states $i \in \mathcal{X}$ (π *admissible policies*)

If $\mu_n(i) = \mu(i)$ for all steps n, policy $\pi = {\mu, \mu, ...}$ is **stationary** and transitions $p_{ij}(a)$ identify a stationary **Markov Chain** $(X_n = i) \rightarrow (X_{n+1} = j)$

Reinforcement Learning - Markov Decision Processes (2/2)

Policy Optimization

The total cost is estimated over possible *trajectories* in finite steps K (*Finite-Horizon*) of repeated sample *episodes* (or as $K \to \infty$ in *Infinite-Horizon* scenarios) summing the observed costs of *Markov Transitions* $X_n \to X_{n+1}$ under *action* $\mu_n(X_n)$: $g(X_n, \mu_n(X_n), X_{n+1})$

The **Total Discounted Expected Cost-to-Go** for finite-horizon K and policy $\pi = {\mu_0, \mu_1, ..., \mu_{K-1}}$ from an **initial** state $X_0 = i$ and with **discount factor** γ is:

$$J^{\pi}(i) = \mathbf{E}\left[\sum_{n=0}^{K} \gamma^{n} g(X_{n}, \mu_{n}(X_{n}), X_{n+1}) | X_{0} = i\right]$$

where the expectation refers to *Markov Chain* trajectory frequencies from $X_0 = i$ in K steps

An *optimal policy* π minimizes $J^{\pi}(i)$: $J^{*}(i) \triangleq \min_{\pi} J^{\pi}(i)$

The optimal policy is **greedy** in the sense that the **agent** minimizes the **Expected Cost-to-Go** $J^{\pi}(i)$ from initial state $X_0 = i$ without considering better alternatives in the future as the environment proceeds to a trajectory identified by π

If the policy space is confined to **stationary** decisions, $\pi = {\mu, \mu, ...}$ independent of the transition step n, then $J^{\pi}(i) \triangleq J^{\mu}(i)$ and the problem is to search for the function $\mu(X_n)$ that minimizes $J^{\mu}(i) = J^*(i)$ for all initial states $X_0 = i$

<u>Note</u>: Optimization objectives other than *Total Discounted Expected Cost-to-Go* include the *Expected Average Cost* per step in *Infinite Horizon* with no discount (Sheldon Ross, "Applied Probability Models with Optimization", Dover, 1992)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Principle of Optimality (*Bellman 1957*) – Finite Horizon Problem

Let an *MDP* with *transition costs* $g_n(X_n, \mu_n(X_n), X_{n+1}) \triangleq \gamma^n g(X_n, \mu_n(X_n), X_{n+1})$, at step n < K and terminal cost $g_K(X_K)$. The *Expected Cost-to-Go* in K step expected trajectories $\{X_0, X_1, \dots, X_K\}$ is:

$$J_0(X_0) = \mathbb{E}\left[\left\{g_K(X_K) + \sum_{n=0}^{K-1} g_n(X_n, \mu_k(X_n), X_{n+1})\right\} | X_0\right]$$

An *optimal policy* $\pi^* = {\mu_0^*, \mu_1^*, \mu_2^*, ..., \mu_{K-1}^*}$ leads the environment in n steps, n < K, to possible *state sub-trajectories* ${X_0, X_1, ..., X_n}$. The *Expected Cost-to-Go* for the *tail sub-trajectory* ${X_{n+1}, X_{n+2}, ..., X_K}$ is:

$$J_n(X_n) = \mathbb{E}\left[\left\{g_K(X_K) + \sum_{k=n}^{K-1} g_k(X_k, \mu_k(X_k), X_{k+1})\right\} | X_n\right]$$

Then the *truncated* policy $\{\mu_n^*, \mu_{n+1}^*, \dots, \mu_{K-1}^*\}$ is optimal for the tail-process (subproblem) $\{X_{n+1}, X_{n+2}, \dots, X_K\}$ with initial state X_n (*Principle of Optimality*)

Justification: if the *truncated* policy were not optimal, then the overall optimal policy π^* would lead the environment up to state X_n . The agent could subsequently change the policy for the remainder steps $\{n + 1, n + 2, ..., K\}$, thus yield lower total trajectory cost than anticipated using π^*

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming (*Bellman 1957*) – Finite Horizon Problem

The **Bellman Principle of Optimality** leads to **Dynamic Programming** formulation for determining an **Optimal Policy** $\pi^* = {\mu_0^*, \mu_1^*, \mu_2^*, ..., \mu_{K-1}^*}$ in three stages by **reversing** the state transition order: $K \to (K - 1) \to (K - 2) \to \cdots \to 1 \to 0$

- ▶ Determine the optimal policy μ_{K-1}^* for the **final** step $X_{K-1} \to X_K$ for all possible X_K
- ► For the *tail subproblem* $X_{K-2} \rightarrow X_{K-1} \rightarrow X_K$ deterime μ^*_{K-2} without changing μ^*_{K-1}
- \blacktriangleright Repeat until reaching X_0 . μ_0^* , completing the search for the overall optimal policy π^*

Dynamic Programming Algorithm

- 1. Start with $J_K(X_K) = g_K(X_K)$ for all terminal states X_K
- 2. For $n = \{K 1, K 2, ..., 1, 0\}$ evaluate recursively the tail **Expected Cost-to-Go** $J_n(X_n)$ for all intermediate states X_n and optimal policies $\mu_n(X_n)$ of the tail subproblems using the **recursive formula** of **greedy** decisions:

$$J_n(X_n) = \min_{\mu_n(X_n)} \mathbb{E}[g_n(X_n, \mu_n(X_n), X_{n+1}) + J_{n+1}(X_{n+1})]$$

The average in the formula refers to all possible states X_{n+1}

- 3. Final determination of $J_0(X_0)$ for all initial states X_0 and actions μ_0^* that complement identification of optimal policies $\pi^* = {\mu_0^*, \mu_1^*, ..., \mu_{K-1}^*}$ that satisfy the *recursive formula*
- 4. For *stationary* policies $\pi = {\mu, \mu, ...}$ the *recursive formula* is simplified by letting $\mu_n = \mu$

Optimality Equations - Infinite Horizon Problem, Stationary Policy Let an *MDP* of fimite states $X_n \in \{1, 2, ..., N\}$, *stationary policies* π , *discount* γ , *transition costs* $g_n(X_n, \mu(X_n), X_{n+1}) \triangleq \gamma^n g(X_n, \mu(X_n), X_{n+1})$ and starting from *initial state* X_0 Find a stationary policy π minimizing the *Expected Cost* in *Infinite Horizon* $n \to \infty$ trajectories

- The *recursive dynamic programming* formula is re-formulated by reversing the trajectory evolution, starting from *initial* states X_0 over a *finite horizon* $n \le K$: $J_{n+1}(X_0) = \min_{H} E[(g(X_0, \mu(X_0), X_1) + \gamma J_n(X_1))|X_0]$ with initial condition $J_0(X) = 0, \forall X$
- Over *infinite horizon* and $X_0 = i$ the optimal policy π yields costs $J^*(i) = \lim_{K \to \infty} J_K(i)$, $\forall i \Rightarrow J^*(i) = \min_{\pi} \mathbb{E}[(g(i, \mu(i), X_1) + \gamma J^*(X_1))|X_0 = i]$
- Define $c(i, \mu(i))$ the *Immediate Expected Cost* of environment state $X_0 = i$ and action $\mu(i)$: $c(i, \mu(i)) \triangleq \mathbb{E}[g(i, \mu(i), X_1 = j) | X_0 = i] = \sum_{j=1}^{N} p_{ij}(\mu(i))g(i, \mu(i), j)$

The average term refers to possible states X_1 resulting from X_0 in one-step transitions

• The optimal μ yields one-step transition cost $E[J^*(X_1)|X_0 = i] = \sum_{j=1}^N p_{ij}(\mu)J^*(j)$

We obtain *N* equations referred to as *Bellman's Optimality Equations*:

$$J^{*}(i) = \min_{\mu} \left(c(i, \mu(i)) + \gamma \sum_{j=1}^{N} p_{ij}(\mu(i)) J^{*}(j) \right), \qquad i = 1, 2, \dots, N$$

These N equations determine $J^*(i)$ via **Policy Iteration** or **Value Iteration algorithms Caution:** We assume knowledge of $p_{ij}(a)$ in what is referred to as **Model-based learning**

Model-based Learning: Policy Iteration (1/2)

Q-factors

- A stationary policy π = {μ, μ, ... } leads to *costs-to-go* J^μ(i), ∀i ∈ X (the *environment state* space) with *agent action* a = μ(i) ∈ A_i
- At every step and for all (*i*, *a*) pairs and tail-policies π = {μ, μ, ...} define the *Q-factors* Q^μ(*i*, *a*) as a comparison metric of alternative direct *agent* actions *a* ∈ A_i that would lead the *environment* from present state *i* to state *j* with expected *costs-to-go* J^μ(*j*), ∀*j* ∈ X

$$Q^{\mu}(i,a) \triangleq c(i,a) + \gamma \sum_{j=1}^{N} p_{ij}(a) J^{\mu}(j)$$

A stationary policy π = {μ, μ, ... } satisfies the *greedy conditions* regarding the expected *costs-to-go* J^μ(j) for the remaining transitions, if the *agent* at every step and ∀i ∈ X selects a = μ(i) so that

$$Q^{\mu}(i,\mu(i)) = \min_{a \in \mathcal{A}_i} Q^{\mu}(i,a), \forall i \in \mathcal{X}$$

A policy π^{*} = {μ^{*}, μ^{*}, ... } is optimal for all steps if it satisfies the *greedy conditions* τof dynamic programming:

$$Q^{\mu^*}(i,\mu^*(i)) = \min_{a\in\mathcal{A}_i} Q^{\mu^*}(i,a)$$

Note: In a dual formulation cost *minimization* is translated as reward *maximization*, *costs* c(i, a) are defined as *rewards* r(i, a), the *costs-to-go* $J^{\mu}(i)$ are referred to as *Value Functions* $V^{\mu}(i)$, and the *Q-factors* are:

 $Q^{\mu}(i,a) \triangleq r(i,a) + \gamma \sum_{j=1}^{N} p_{ij}(a) V^{\mu}(j) \text{ and } Q^{\mu^*}(i,\mu^*(i)) = \max_{a \in \mathcal{A}_i} Q^{\mu^*}(i,a)$

Model-based Learning: Policy Iteration (2/2)

Actor - Critic Architecture

(A.G. Barto, R.S. Sutton & C.W. Anderson, "Neuronlike adaptive elements that can solve difficult learning control problems," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, Sept. – Oct. 1983) Iterations n = 0,1,2,... of steps until convergence: $\mu_{n+1}(i) = \mu_n(i)$, $J^{\mu_{n+1}}(i) = J^{\mu_n}(i)$, $\forall i$

Step 1. Policy Evaluation (the *critic* evaluates the *agent actions*): Based on current policy $\pi_n = {\mu_n, \mu_n, ...}$ evaluate *costs-to-go*:

$$J^{\mu_n}(i) = c(i, \mu_n(i)) + \gamma \sum_{j=1}^N p_{ij}(\mu_n(i)) J^{\mu_n}(j)$$
 for $\forall i$

For $\forall i$ and $\forall a \in \mathcal{A}_i$ evaluate **Q**-factors: $Q^{\mu_n}(i, a) = c(i, a) + \gamma \sum_{j=1}^N p_{ij}(a) J^{\mu_n}(j)$

Step 2. **Policy Improvement** (the *actor* guides the *agent decisions*): Policy π_n is updated to π_{n+1} by updating $\mu_{n+1}(i) = \arg \min_{a \in A_i} Q^{\mu_n}(i, a)$ for i = 1, 2, ..., N

The algorithm converges to an optimal policy in finite steps n due to finite state-space N and finite action space

Model-based Learning: Value Iteration Algorithm

Estimation of Cost-to-Go via Successive Approximations $J_n(i) \rightarrow J_{n+1}(i)$

- **Start** with arbitrary initial values for $J_0(i)$, $\forall i$
- *Iterate* $n \rightarrow n + 1$ until *acceptable convergence* (In theory $n \rightarrow \infty$) via *Bellman's* equations
- Final evaluation of (sub)optimal Costs-to-Go:

 $J^{*}(i) = \lim_{n \to \infty} J_{n}(i), \ Q^{*}(i,a) = c(i,a) + \gamma \sum_{j=1}^{N} p_{ij}(a) J^{*}(j)$

and *determination* of *optimal policy*: $\mu^*(i) = \arg \min_{a \in A_i} Q^*(i, a) \gamma_{i\alpha} i = 1, 2, ..., N$

TABLE 12.2 Summary of the Value Iteration Algorithm

- 1. Start with arbitrary initial value $J_0(i)$ for state i = 1, 2, ..., N.
- 2. For n = 0, 1, 2, ..., compute

$$J_{n+1}(i) = \min_{a \in \mathcal{A}_i} \left\{ c(i,a) + \gamma \sum_{j=1}^{N} p_{ij}(a) J_n(j), \right\}, \qquad \substack{a \in \mathcal{A}_i \\ i = 1, 2, ..., N}$$

Continue this computation until

$$|J_{n+1}(i) - J_n(i)| \le \epsilon$$
 for each state i

where ϵ is a prescribed tolerance parameter. It is presumed that ϵ is sufficiently small for $J_n(i)$ to be close enough to the optimal cost-to-go function $J^*(i)$. We may then set

$$J_n(i) = J^*(i)$$
 for all states *i*

3. Compute the Q-factor

$$Q^*(i,a) = c(i,a) + \gamma \sum_{j=1}^N p_{ij}(a) J^*(j) \quad \text{for } a \in \mathcal{A}_i \text{ and} \\ i = 1, 2, ..., N$$

Hence, determine the optimal policy as a greedy policy for $J^*(i)$:

$$\mu^*(i) = \arg\min_{a \in \mathcal{A}_i} Q^*(i,a)$$

- The Value Iteration algorithm, if it converges in an acceptable runtime, avoids evaluations of Q-factor and policy updates at every step unlike Policy Iteration
- Assumes (as *Policy Iteration*) a priori knowledge of p_{ij}(a)
 (*Model-based Learning*)
- Alternatively *Model-free Learning* methods search for optimal policies without prior knowledge of p_{ij}(a), e.g. via *Monte Carlo* trajectory simulations, algorithms for *Q-Learning* estimation...

Dynamic Programming Algorithms (*Bellman-Ford*) support global Internet Routing (*Border Gateway Protocols* - *BGP*) specified by the ~78,000 *Autonomous Systems* (*AS*) of the *Internet* to the ~1,000,000 known network destinations