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Hopfield Recurrent Neural Netwotk
(1982, John Hopfield)

Binary non-stochastic neurons with recurrent 
synapses, threshold activation and Hebbian 
supervised learning to determine 𝑤𝑗𝑖 = 𝑤𝑖𝑗, 𝑤𝑖𝑖 = 0 

in (local) minimum of system energy. Application in 
pattern classification – recognition of images

(1985, Geoffrey Hinton & Terry Sejnowski)
Goal: Approximation of deficient input sample 
vectors (e.g. image pattern completion) by 
generation of output vector estimates, statistically 
conforming to unlabeled training sample

The BM converges via unsupervised learning to
Markov Random Field “thermal” equilibrium:
• Binary training vectors are clamped to Visible 

Nodes; via a gradient ascent algorithm synaptic 
weights converge and final states of both Visible
& Hidden Neurons are determined

• A new input vector (test) is inserted In Visible 
Nodes. The BM generates via Gibbs sampling its 
output image as an update in the Visible Nodes, 
statistically conforming to training sample vectors

A Boltzmann Machine (ΒM) is a Stochastic 
Recurrent Network with 2 layers of neurons: 
• 𝐾 Visible, 𝐿 Hidden binary state Stochastic 

Neurons, with state probabilities assigned via 
unsupervised learning

• Symmetric Synapses 𝑖 → 𝑗:  𝑤𝑗𝑖 = 𝑤𝑖𝑗, 𝑤𝑖𝑖 = 0

amongst all neurons
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https://jwmi.github.io/BMS/chapter6-gibbs-sampling.pdf

Gibbs Sampling - Bayesian  Statistics
(Jeff Miller, Duke University 2015: https://jwmi.github.io/BMS/chapter6-gibbs-sampling.pdf)

• Sampling: 
➢ Selection of a Sample, a subset of a Sample Space with elements conforming to 

statistics inferred from the superset sample space
➢ Processing of Sample Elements of the Sample for statistical analysis that can be 

generalized to the superset sample space (polls, client preferences…)

• Sampling for Multi-Dimensional Elements, Sample Vectors: Gibbs Sampling
➢ A version of the Metropolis algorithm to generate and trace (correlated) trajectories of 

multi-dimensional sample vectors via Markov Chain Monte Carlo (MCMC) simulations
➢ An Example of Dimensionality 2: Generation of random pairs 𝐗 = [𝑋 𝑌]T with Joint 

Probabilities 𝑃(𝑋, 𝑌) based on sampling of single random variables according to 
Conditional Probabilities (from Bayesian statistics):

𝑥(𝑛)~𝑃(𝑋|𝑦(𝑛 − 1) και 𝑦(𝑛)~𝑃(𝑌|𝑥(𝑛))
➢ Generalization for 𝑲 Dimensions: Sampling of 𝐗 = [𝑋1 𝑋2 ⋯ 𝑋𝐾 ]

T

𝑛 = 0: Arbitrary initialization 𝐱(0) = 𝑥1 0 𝑥2 0 … 𝑥𝐾 0 T

𝑛 → 𝑛 + 1: For 𝑖 = 1, … , 𝐾 generate random variable 𝑥𝑖 𝑛 + 1 with probability
𝑃 𝑋𝑖 𝑛 + 1 |{𝑥1 𝑛 + 1 … 𝑥𝑖−1 𝑛 + 1 𝑥𝑖+1 𝑛 … 𝑥𝐾 𝑛 }

The condition relies on recently recorded coordinate values and excludes 𝑋𝑖 𝑛

https://jwmi.github.io/BMS/chapter6-gibbs-sampling.pdf


https://www.baeldung.com/cs/gibbs-sampling

Example of Gibbs Sampling for 2 Dimensions
(Enes Zvornicanin, 2024 https://www.baeldung.com/cs/gibbs-sampling)

➢ Given a Sample Space of Random Variable pairs [𝑋 𝑌]T with binary values 𝑥, 𝑦 ∈ {0,1}
➢ The joint probabilities 𝑃(𝑋, 𝑌) are given as:

▪ 𝑃 𝑋 = 1, 𝑌 = 1 = 0.2, 𝑃 𝑋 = 0, 𝑌 = 1 = 0.3
▪ 𝑃 𝑋 = 1, 𝑌 = 0 = 0.4, 𝑃 𝑋 = 0, 𝑌 = 0 = 0.1

➢ Generate 𝑛 pairs: [𝑥 𝑛  𝑦(𝑛)]T ~ 𝑃 𝑋, 𝑌  via direct or Gibbs sampling
➢ Direct Sampling: Use joint probabilities 𝑃(𝑋, 𝑌)

Repeated Monte Carlo (MC) trials to generate uniformly distributed (pseudo)random 
number 0 < 𝑅 ≤  1 placed within 4 intervals , e.g. if 𝑅 = 0.5 the trial generated [1 0]T

➢ Gibbs Sampling: Use conditional probabilities (Bayes) 𝑃(𝑋/𝑌), 𝑃(𝑌/𝑋) to avoid 
splitting the {0,1} range to ≫ 2 intervals and bypass involved MC comparisons

▪ 𝑃 𝑋 = 1|𝑌 = 1 =
𝑃 𝑋=1,𝑌=1

𝑃 𝑌=1
=

𝑃 𝑋=1,𝑌=1

𝑃 𝑋=1,𝑌=1 +𝑃(𝑋=0,𝑌=1)
=

0.2

0.2+0.3
= 0.4

▪ 𝑃 𝑋 = 1|𝑌 = 0 = 0.8, 𝑃 𝑋 = 0|𝑌 = 0 = 0.2, 𝑃 𝑌 = 1|𝑋 = 1 = 0.333
▪ 𝑃 𝑌 = 0|𝑋 = 1 = 0.666, 𝑃 𝑌 = 1|𝑋 = 0 = 0.75, 𝑃 𝑌 = 0|𝑋 = 0 = 0.25

Gibbs Sampling Algorithm
▪ Initial Step: 𝑥 0 = 1   𝑦 0 = 0
▪ Step 1: 𝑥(1)~𝑃(𝑋|𝑦 0 )  𝑦(1)~𝑃(𝑌|𝑥 1 )
▪ Step 2: 𝑥(2)~𝑃(𝑋|𝑦 1 )  𝑦(2)~𝑃(𝑌|𝑥 2 )
▪ Step 𝑛: 𝑥(𝑛)~𝑃(𝑋|𝑦 𝑛 − 1 ) 𝑦(𝑛)~𝑃(𝑌|𝑥 𝑛 ) 
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𝑅

https://www.baeldung.com/cs/gibbs-sampling
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Learning Phases of Boltzmann Machine

• Learning is accomplished in two phases of the Boltzmann Learning Rule

• Positive Phase: The input vectors of the Training Sample 𝓣 are clamped to states ±1 of 
the 𝐾 visible neurons based on values of their features. Synaptic weights between all 
𝐿 + 𝐾 neurons are iteratively determined leading to target Gibbs equilibrium using the 
maximum likelihood principle. During the positive phase, the BM encodes in its
𝐿 hidden neurons higher order statistical properties (e.g. correlations) with marginal 
distribution under the clamped condition of its 𝐾 visible neurons

• Negative Phase: In this subsequent phase all neurons (visible and hidden) interact freely, 
with no clamping to the training vectors in 𝓣. Synaptic weights are iteratively 
determined leading all BM neurons to Gibbs equilibrium. The final states of the visible 
neurons generate the output vector, an image of the initial input vector as a new 
sample element with limiting feature probabilities consistent with those of 𝓣

• Algorithm Complexity: It usually requires a very large number of hidden neurons 
(hyperparameter 𝐿 ≫ 𝐾) to encode statistical properties of polymorphic samples, and 
may need a considerable number of iterations for convergence of 𝑤𝑖𝑗 = 𝑤𝑗𝑖, 𝑤𝑖𝑖 = 0

amongst all 𝐿 + 𝐾 neurons

• Analogy with Neurophysiology: Synapses between nodes of similar state tend to be 
tightly connected (Hebbian Learning). Positive Phase ~ Active Cerebral operation;
Negative Phase ~ Processing during sleeping time of signals acquired while awake (???)
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https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf

https://youtu.be/5jaBneYd5Ig

Definitions

• Network State: Random vector 𝐗 → 𝐱 = [𝑥1 𝑥2 … 𝑥𝐾 … 𝑥𝑚 ]T, 𝑚 = 𝐿 + 𝐾
 𝑥𝑖 ∈ −1,1 ≜ {𝑂𝐹𝐹, 𝑂𝑁} with 𝑥𝑖 the state of stochastic neuron 𝑖 

• State of 𝐾 Visible & 𝐿 Hidden Neurons: 𝐗α → 𝐱α, 𝐗β → 𝐱β,  𝐱 = (𝐱α, 𝐱β)

• Synaptic Weights 𝑖 → 𝑗 : 𝑤𝑗𝑖 = 𝑤𝑖𝑗, 𝑤𝑖𝑖 = 0 (a possible external bias to neuron 𝑗 is 

assumed to emanate from a fictitious node 0 in 𝑂𝑁 state with synaptic weight 𝑤𝑗0)

• Energy of BM:  𝐸 𝐱 ≜ −
1

2
σ𝑖 σ𝑗≠𝑖 𝑤𝑗𝑖𝑥𝑖𝑥𝑗 for 𝐱 with coordinates 𝑥𝑖 ∈ −1,1

(thermodynamic analogy)

• Thermal Equilibrium Probabilities: 𝑃 𝐗 = 𝐱 =
1

𝑍
exp −

𝐸 𝐱

𝑇
 

   Gibbs/Boltzmann distribution depending on parameters 𝑤𝑖𝑗 in 𝐸 𝐱

• State of 𝐾 Visible Neurons: 𝐗α → 𝐱α = [𝑥1 𝑥2 … 𝑥𝑖 … 𝑥𝐾 ]T 
Binary coordinates 𝑥𝑖  correspond to features of input/output vectors. The probability that 
neuron 𝑖 is 𝑂𝑁 equals to 𝑃 𝑥𝑖 = 1

https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf
https://youtu.be/5jaBneYd5Ig

https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf
https://youtu.be/5jaBneYd5Ig


• Definition of Events for 𝑚 Dimensional Vector Sample Space:

For sample vector 𝑋1 = 𝑥1 𝑋2 = 𝑥2  … 𝑋𝑗 = 𝑥𝑗  … 𝑋𝑚 = 𝑥𝑚
T

 we define the sets (events) 

𝐴: (𝑋𝑗 = 𝑥𝑗), 𝐵: (𝑋1= 𝑥1 , … ,  𝑋𝑗−1 = 𝑥𝑗−1 ,  𝑋𝑗+1= 𝑥𝑗+1, … ,  𝑋𝑚 = 𝑥𝑚) and

𝐶:  (𝑋1= 𝑥1, … ,  𝑋𝑗 = 𝑥𝑗 , … , 𝑋𝑚 = 𝑥𝑚) the joint event of 𝐴 and 𝐵

In thermal equilibrium and for 𝑋𝑗 generated via Gibbs sampling we obtain:

𝑃 𝐶 = 𝑃 𝐴, 𝐵 =
1

𝑍
exp

1

2𝑇


𝑖



𝑗≠𝑖

𝑤𝑗𝑖𝑥𝑖𝑥𝑗

𝑃 𝐵 = 

𝐴

𝑃 𝐴, 𝐵 =
1

𝑍


𝑥𝑗

exp
1

2𝑇


𝑖≠𝑗



𝑗

𝑤𝑗𝑖𝑥𝑖𝑥𝑗

• State Transition Conditional Probabilities with Parameters 𝑤𝑗𝑖  :

 With 𝑥𝑖 , 𝑥𝑗 values at ±1 the conditional probability 𝑃 𝑋𝑗 = 𝑥𝑗 𝐵 takes a simplified form: 

𝑃 𝑋𝑗 = 𝑥 𝐵 = 𝑃 𝐴 𝐵 =
𝑃(𝐴, 𝐵)

𝑃(𝐵)
=

1

1 + exp −
𝑥𝑗

𝑇
σ𝑖≠𝑗 𝑤𝑗𝑖𝑥𝑖

𝑃 𝑋𝑗 = 𝑥 𝐵 = 𝑃 𝑋𝑗 = 𝑥| 𝑋1 = 𝑥1, … ,  𝑋𝑗−1= 𝑥𝑗−1,  𝑋𝑗+1= 𝑥𝑗+1, … , 𝑋𝑚 = 𝑥𝑚

= 𝜑
𝑥

𝑇


𝑖=1,𝑖≠𝑗

𝑚

𝑤𝑗𝑖𝑥𝑖
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The joint probability 𝑃(𝐴, 𝐵) results from Gibbs sampling 
starting at 𝐱(0), with 𝐱(𝑛) → 𝐱(𝑛 + 1) transitions based on the 
most recent 𝑥𝑖(𝑛) values and with 𝑇 → 0 (Simulated Annealing)

𝜑 𝑣 =
1

1 + exp(−𝑣)

Sigmoid Function
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Boltzmann Learning Rule: Maximum Likelihood or Log-Likelihood Principles
The state vector 𝐱 consists of two subsets: 𝐱𝛼 and 𝐱𝛽 that reach Gibbs thermal equilibrium. The 

BM learning proceeds in two successive phases:
• Positive Phase with visible neurons clamped to input vectors of the training sample 𝓣
• Negative Phase with all neurons interacting freely with no outside interference

Synaptic weights 𝑤𝑗𝑖 (elements of matrix 𝐰 of the entire BM) lead to limiting equilibrium 

probabilities Gibbs of visible neurons 𝑃 𝐗𝛼 = 𝐱𝛼 for the sample 𝓣. With many elements in 𝓣
we can assume that vectors 𝐗𝛼 are independent random vectors with total equilibrium 
probability equal to the factorial distribution (product):

ෑ

𝐱𝛼∈𝓣

𝑃 𝐗𝛼 = 𝐱𝛼

Sample element probabilities 𝑃 𝐗𝛼 = 𝐱𝛼 contain all subsets 𝐱𝛽 in vectors 𝐱 = (𝐱𝛼 , 𝐱𝛽). Thus: 

𝑃 𝐗𝛼 = 𝐱𝛼 =
1

𝑍
σ𝐱β

exp −
𝐸(𝐱)

𝑇
, 𝑍 = σ𝐱 exp −

𝐸(𝐱)

𝑇
, 𝐸 𝐱 ≜ −

1

2
σ𝑖 σ𝑗≠𝑖 𝑤𝑗𝑖𝑥𝑖𝑥𝑗 

(𝑍 involves normalization over all combined states 𝐱)

The logarithm 𝐿 𝐰  of the factorial distribution is the Log-Likelihood function:

𝐿 𝐰 = log ෑ

𝐱𝛼∈𝓣

𝑃 𝐗𝛼 = 𝐱𝛼 = 

𝐱𝛼∈𝓣

log 𝑃 𝐗𝛼 = 𝐱𝛼

Determining 𝐰 is equivalent to maximizing 𝐿 𝐰  with 
respect to parameters 𝑤𝑗𝑖 (maximum-likelihood principle)
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Boltzmann Machines were an early theoretical break-through by J. Hinton and colleagues  
towards Generative AI. However, they suffer from great complexity and slow convergence

Improvements: Restrictive Boltzmann Machines (RBM) & Deep Belief Networks (DBN)

Boltzmann Learning Rule: Maximum Likelihood or Log-Likelihood Principles
 (cont.)

The Log-Likelihood 𝐿 𝐰  is given by:

𝐿 𝐰 = σ
𝐱𝛼∈𝓣 log σ𝐱β

exp −
𝐸(𝐱)

𝑇
− log σ𝐱 exp −

𝐸(𝐱)

𝑇
,  𝐸 𝐱 = −

1

2
σ𝑖 σ𝑗≠𝑖 𝑤𝑗𝑖𝑥𝑖𝑥𝑗

The Boltzmann Learning Rule maximizes the objective 𝐿 𝐰  as a function of all synaptic 
weights by moving towards directions of gradient ascent:

𝜕𝐿 𝐰

𝜕𝑤𝑗𝑖
=

1

𝑇


𝐱𝛼∈𝓣



𝐱β

𝑃 𝐗𝛽 = 𝐱𝛽 𝐗𝛼 = 𝐱𝛼 𝑥𝑗𝑥𝑖 − 

𝐱

𝑃 𝐗 = 𝐱 𝑥𝑗𝑥𝑖 ≜
1

𝑇
ρ𝑗𝑖

+ − ρ𝑗𝑖
−

ρ𝑗𝑖
+ denotes the average firing rate or the correlation between states of neurons 𝑗 𝑖 in the 

Positive Phase while ρ𝑗𝑖
− the correlation between states of neurons 𝑗 𝑖 in the Negative Phase

The algorithm proceeds to weight updates in a batch mode, with all training sample elements 
of 𝓣 considered in each iteration. Updates proceed with fixed step  𝛜:

∆𝑤𝑗𝑖 = 𝛜
𝜕𝐿 𝐰

𝜕𝑤𝑗𝑖
= η ρ𝑗𝑖

+ − ρ𝑗𝑖
−

The learning rate η =
𝛜

𝑇
 is inversely proportional to 𝑇 in the Simulated Annealing cooling steps



https://en.wikipedia.org/wiki/Generative_model

Generative Model
It is based on joint probabilities 𝑃 𝑥, 𝑦  as the relative frequency of joint appearances of 

observable 𝑥 and target 𝑦. Conditional posterior probabilities 𝑃 𝑦|𝑥 =
𝑃 𝑥,𝑦

𝑃 𝑥
=

𝑃 𝑥|𝑦 𝑃(𝑦)

𝑃 𝑥
 are 

evaluated via Bayesian reasoning. The evidence probability 𝑃 𝑥 = σ𝑦 𝑃 𝑥, 𝑦  results from 

sums of joint probabilities. Note that the other terms in Bayes formula are referred to as the 
prior probability 𝑃(𝑦) and likelihood 𝑃 𝑥|𝑦 . Pairs (𝑥, 𝑦) can be generated or corrected 
according to 𝑃 𝑥, 𝑦  estimated during the training phase and generalized to reflect statistics of 
specific use cases

Example: 𝑥 ∈ 1,2 , 𝑦 ∈ 0,1 (https://en.wikipedia.org/wiki/Generative_model)

  

𝑃 𝑥 = 1 = Τ1 2,  Τ𝑃 𝑥 = 2 = 3 6 = Τ1 2

Used for cases of deficient datasets (e.g. gaps in images, noisy voice signals) requiring corrective 
actions based on inferred statistical correlations, e.g. Boltzmann Machine

𝑃 𝑥, 𝑦 𝑦 = 0 𝑦 = 1

𝑥 = 1 Τ1 2 0

𝑥 = 2 1/6 Τ2 6

𝑃 𝑦|𝑥 𝑦 = 0 𝑦 = 1

𝑥 = 1 𝟏 0

𝑥 = 2 2/6 𝟒/𝟔

⇒

Traditional Discriminative Model of Supervised Learning
It is based on conditional probabilities 𝑃 𝑦|𝑥  directly estimated from (labeled) training 
sample data (e.g. Logistic Regression and Back-Propagation Algorithm). A new input 
observable element 𝑥 is assigned to target output 𝑦 based on the highest 𝑃 𝑦|𝑥  inferred 
during training and presumably generalizable for unseen sample elements

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Discriminative & Generative Classification

https://en.wikipedia.org/wiki/Generative_model


Data 
      Sample

      

𝑝(𝑥): Distribution of Training Sample with 𝑛 elements 𝑥 ∈ 𝑥1, 𝑥2, … , 𝑥𝑛  
Ƹ𝑝𝜃 𝑥 : Distribution of Generated Sample at the output of a neural network with parameters 𝜃 

and arbitrary Input Sample 𝑍, e.g. 100 random numbers with Gaussian distribution, 

Learning Phase: Tuning of parameters 𝜃 of the neural network based on Training Sample 
elements so that ෝ𝒑𝜽 𝒙 → 𝒑(𝒙) (usually as in the Kullback-Leibler divergence metric)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Aspects of Generative Models

https://openai.com/blog/generative-models/

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

Similarity Metrics of Distributions 𝑝 𝑥 , 𝑞(𝑥)

• Divergence Kullback-Leibler (KL) (1951): 

 𝐷KL(𝑃| 𝑄 = σ
𝑥∈𝓣𝑃 𝑥 log

𝑄(𝑥)

𝑃(𝑥)

    e.g. applied in Boltzmann Machine
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence 

• Expectation-Maximization (EM) Algorithm : 
 Two successive steps (expectation – minimization) to determine latent parameters
 e.g. determination of percentages of random variables combined from independent Gauss samples
 https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

https://openai.com/blog/generative-models/
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm


https://arxiv.org/pdf/1406.2661.pdf

2014 Ian Goodfellow et.al. https://arxiv.org/pdf/1406.2661.pdf 
Based on comparisons of outputs processed by two independent players in a zero-sum
adversarial min-max game: Divergence between Generated and Real sample elements

Learning is based on tuning of two deep Multilayer Perceptrons - MLP:
• The Generator (G) with input latent random variables 𝑧 (e.g. Gauss) and output 𝐺(𝑧) that 

generates a virtual sample element ො𝑥, distributed according to 𝑝𝜃 ො𝑥
• The Discriminator (D) that classifies via supervised learning (backpropagation) the divergence 

between real elements 𝑥~𝑝(𝑥) and virtual generated elements ො𝑥~𝑝𝜃 ො𝑥
For as long as D senses the difference between 𝑥 and ො𝑥 it classifies the output as Generated.
Then player G modifies its parameters 𝜃 and the game is repeated until D is deceived and 
classifies the output as Real

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Generative Adversarial Network - GAN

https://en.wikipedia.org/wiki/Generative_adversarial_network

Applications: Computer vision, virtual 
reality, computer graphics, interactive 
games, scientific simulations, ….

Cost Functions (Loss) for D - G Game:

D: 𝑚𝑎𝑥 log 𝐷 𝑥 + log 1 – 𝐷 𝐺 𝑧

     maximize probability ො𝑥 classified as fake

G: 𝑚𝑖𝑛 log 1 –  𝐷 𝐺 𝑧

     minimize probability ො𝑥 classified as fake

https://arxiv.org/pdf/1406.2661.pdf
https://en.wikipedia.org/wiki/Generative_adversarial_network
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