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Evolution of Systems to Thermal Equilibrium:
Markov Chain Monte Carlo (MCMC) Simulation Algorithms of Metropolis (1/5)

* The aim of MCMC simulations is to record trajectories of a sample element (discrete time
series) X,, = x,n =1,2,... as a random walk of a Markov Chain (MC) state with random yet
controllable transitions. The resulting sample consists of elements approaching a Gibbs
probability distribution

« A MCMC program generates trajectories of state x to thermal equilibrium and estimates

ergodic probabilities Tt(x) as the limit of relative frequencies f,,(x) in n transitions:

X
n(x) = limP(X, =x) = lim fu®)
. n—o00 n—oo N

Common use of Monte Carlo Simulations:
« Estimation of moments (e.g. averages and 2" moments) of discrete random variables

drawn form a sample space tough (or impossible) to register
* Evaluation of normalization (partition function) for models with intractable possible states

» Sample values generated (sampled) via MCMC may be distributed
according to the target Gibbs distribution but are correlated due to the
Markov random walk generation method

» Sample values Independent Identically Distributed (IID) can be
sampled using simple methods, e.g. random generation of multi-
dimensional points and counting those under the histogram curve to
estimate metrics such as area under the curve (Rejection Sampling)

https://en.wikipedia.org/wiki/Rejection sampling#Adaptive rejection sampling



https://en.wikipedia.org/wiki/Rejection_sampling#Adaptive_rejection_sampling
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Approach & Limitations

Generate a Target distribution 1t(x) proportional to the relative frequency of values assumed
by the random variable (or vector) X,, over the sample space: ¥ m(x)=) P(X, =x) =1
X X

T(x) has a given form Tt(x)xTt (x), e.g. Gibbs distribution Tt(x)x exp (—@) but cannot

generate samples directly as it may experience difficulties in registering the entire state space
and computing the normalizing partition function

The goal is to generate sample elements X, =x,n=1,2,.. with frequency of appearances
7t (x), proportional to the target probability distribution Tt(x)x7t (x)

The approximation of relative frequencies (histogram) P (X,, = x) — m(x) is accomplished by
simulating state transitions as a random walk of an ergodic Markov Chain with appropriately
set transition probabilities. This technique, referred to as Markov Chain Monte Carlo (MCMC)
simulation, records the number of visits to states { X, } in trajectories and thus approximates
the distribution 1t(x)

The MCMC methods may be powerful to sample random variables given a histogram or to
approximate complicated partition functions. However, they generate correlated
Markovian time series, a problem when Independent Identically Distributed (IID) sampling

IS required
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Qr, (el =) A 7(x)

(X)o7t (x) 0 7 (x;) 1

Aa=XY =%

* Given the form 7t (x) of ergodic target distribution Tt (x)xfi(x) for x€{0,1,2,...} we seek the
generation of a time-reversible Markov Chain (MC) X, = x, approximately distributed
according to Tt(x)

* Let X, = x;. Generate a random variable Y, = x; distributed according to an arbitrary but
symmetric around x; Proposal Conditional Density Qy, (xX,, = x;):

P(Y,=x|X,=x)=P(Y, =x|X, =x)

* For the candidate next state Y, = X; of the MC random walk:

> If Tc( ) > 7t (x;) the transition X,, = Y isaccepted = X, .1 =Y, = Xj

> If T(( j) < ft(x;) generate a random number &, uniformly distributed in (0,1)

If & < ( ) = n(x) the transition X,, — Y, is accepted = X,,,; =Y, =x;
T((xz) T((xz)
Else the state remains at the same value = X, .| = x;
* Caution in selecting the initial state X; = x and the symmetric Proposal Conditional Density

Qy, (x|X,, = x;): It should cover a wide range of x so that the MC random walk would not

Cdvenitaneitavithircaubsalistodvdiakes thak rarely Treyuedowawiitabition xe(x;—a, x; + a)
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Generation of Random Samples Thermal Equilibrium Probabilities
The Metropolis algorithm generates via simulation a time-reversible Markov Chain (MC) as
arandom walk X,, = x; distributed according to the Gibbs thermal equilibrium probabilities
TU(xX;)x exp (—@) Their exact values depend on the Partition Function Z that satisfies
zat )1 CED) _
the normalization Ei T(x;) = ~ Zi exp( )= 1 in a usually complex state-space,

rendering its evaluation a combinatorially hard (NP-Complete) problem

Using the Metropolis Algorithm we generate a time-reversible MC as a random walk of random

variables X, satisfying the detailed balance equations that after n transistions (steps) lead to
state x;. Using a random variable generator we subsequently produce a state X; of another

process Y, with symmetric transition probabilities X,, — Y
P(Yn = ]|Xn = xi) = P(Yn = xi|Xn = x])
This transition would result into energy change AE = E]-—El-

* If AE <0 the transition leads to an acceptable lower energy state (Y, = x;): X, 11 =Y,

* If AE > 0 the transitionto (Y,, = x]-) is accepted with probability exp (—A—f), with T the

“temperature” (or external control) of the environment and X, ;=Y. Else X, ,; :=X,,. The

evolution of the random walk depends on independent Bernoulli Trials (accept transition or
not) is based on the (pseudo)random number & uniformly distributed in (0,1):

If & <exp(—25), X, = Y, else X, = X,
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Choice of Transition Probabilities
* Generate a new MC with arbitrary symmetric transition probabilities t; from X, = x; to

anew state Y, = x;:
1; =P(Y, =x|X, =x;) =P(Y, =x|X, =x;) =1,
7; 20, ¥Yijand ) 7;=1Vi,
J
* The MC X, will follow transition probabilities p;; related to 7;; as follows:
T _

le;i

E]'—Ei T(]'
T;i exp(——=—) for £<1
Z] T T(l . .
Pij:P(XnH :x]'|Xn :xi) = m; , 1 :/:]
Tij for ;1 > 1

and with p;; consistent with the normalization equation )} p;;=1,¥i:
J

T
Pii = Tjj +2 T\ 1=
1

J#L
e All Pii above abide with the detailed balance equations, yielding to Gibbs target

robabilities =1 X (—5)
P T TZOP\ 7T

T E.—E.
. R . _ e i T _AE
The transition probabilities Pii above depend only on ratios —— exp( — ) = exp( - )

bypassing the need of partition function Z evaluation (often an NP-Complete Problem)
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The MCMC algorithm (by Nicholas Metropolis et.al., 1953) assumes symmetric transitions
and leads to time reversible chains that satisfy detailed balance equations. It converges to

Gibbs (Boltzmann) state probabilities 1t; = % exp ( —%) with proper definitions of E;

It was generalized by W.K. Hastings in 1970 to the Metropolis-Hastings (MH) algorithm

» Proposal Conditional Density:
No symmetry is required in the (arbitrary) selection of Qy (x|X,, = x;)

P(Yn = ]|Xn = xi) F P(Yn = .'Xfi|Xn = x])

» Probability of Acceptance of Transition X, 1 = x;:
 f ﬁ(x]-) X P(Yn = xi|Xn = xj) > Tt (x;) X P(Yn = ]-|Xn = xl-) transition X, — Y is
accepted and X, .1 =x;
* Else, generate a random number & uniformly distributed in (0,1)
v IfE <7:‘(xj) " (Vo= Xom=x;)
(xi) (Y= X=x;)
v If not X,, remains in its current value and X, ; = x;

the choice X, — Y, is accepted & X, 1 = x;

* The Metropolis algorithm is a special case of MH with symmetric Qy (x|X,, = x;)
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Shortcoming of the MH Algorithm

* The MH algorithm generates a Markov Chain with ergodic probabilities as specified in a
given target histogram but the random variables of the sample are correlated

* If the requirement is to generate multi-dimensional sample random vectors X, the
algorithm may suffer by the curse of dimensionality

* The selection of Proposal Conditional Density Qy (x|X,, = x;) and initial state X, = x; may be

of paramount importance for correct and fast convergence of the MH algorithm
https://onlinelibrary.wiley.com/doi/full/10.1002/9781118445112.stat07834

 The influence of X diminishes if we ignore transient states, e.g. for steps n <1000

Example: Simulation of X,, conforming to a target distribution 1(x) proportional to
7 (x) = sin?(x) X sin? (2x) X @(x) with @(x) Normal IN (0,1)
Select Qy (x|X =x;) =5-1,. —ata (x), uniform with average x; and range (x; £ a)

12

0.6 " ‘I‘ J ‘ T

h I f %. | : |
| ﬂ*ﬂﬂﬁw ] n’l ) ”M b ] H ‘Ml“ Hlumm,z | JM‘ ’NMH?HHM oy

a=1X,=314 a=01X,=3.14 a=02X, =314
Correct convergence in 10%steps Failure in 10* steps Partial failure in 10%steps

(State trapped in 1 lobe) (State trapped in positive values)


https://onlinelibrary.wiley.com/doi/full/10.1002/9781118445112.stat07834
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Generates via Monte Carlo simulations sample vectors of large dimensionality exhibiting
Gibbs ergodic probabilities. However, vectors are correlated due to Markovian transitions

The Gibbs Sampling method is a variant of the Metropolis iterative algorithm eventually
leading to lower energy states, but allowing some opposite direction transitions with
diminishing probability as convergence is being approached

Every iteration proceeds along each coordinate of the vector sample space. Transition
probabilities for a specific coordinate depend on the most recent values of all other
coordinates evaluated at the present iteration, excluding the coordinate under
consideration

It converges to Gibbs distributed samples, by estimating joint or marginal ergodic
probabilities as relative frequency of visits to states during the simulation time horizon

Some Uses of Gibbs Sampling
Efficient generation of sample vectors with Gibbs target distribution

Complementing vectors containing non-observed or distorted coordinates assuming Gibbs
distributions (e.g. hidden variables in Deep Neural Networks)

Estimation of functions of a variable that depends on Gibbs sample vector single coordinate,
e.g. on the mean of values in a specific coordinate
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* Sample Space: Random Vectors of dimension K at Iteration Step n of the Random Walk
X(n) =[X;(n) Xp(n) ... Xg(m]"
 State Vector: Values x; (1) assigned to the K Random Variables X (1) of the coordinates of
the random vector X(n)
x(n) = [x1 (1) xp(n) ... xg (W)]"
Algorithm (Stuart & Donald Geman, 1984)
« 1 =0: Start from an arbitrary initial state vector x(0) =[x (0) x5 (0) ... xx (0)]*

e n—on+l: Fori =1,.., K generate state values x; (n + 1) for X;(n + 1) with pseudo-
random algorithm based on the conditional probability
PIXi(n+DHxy(n+ 1) xi g (n+1) x40 (1) o xg (1) }]
* Note 1: The condition involves coordinates j # i evaluated up to this step and not X; (1)
* Note 2: The conditional probabilities can be inferred from joint probabilities (Bayes rule)

and the system (environment) specifications
https://www?2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-7/07-

gibbs.pdf
* The sequence x;(n), i = 1,...,K forms a Markov Chain that converges (geometrically) to the

i" coordinate of state x = [x1 x5 ... xg] at thermal equilibrium, with marginal probability
lim P (X;(n) = x;(n)|x;(0)) = P(X; = x,)

n—oo

The state vector X(7) converges to and Gibbs joint probabilities

1/ Ew)
Machine ;,E&r%.ﬁé‘ Ap_pﬁﬁ‘étﬁ)n; GenATIEddts - Bolizman M§ch_ing (BMY, Regtrittive BM



https://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-7/07-gibbs.pdf
https://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-7/07-gibbs.pdf
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Sampling of Random Walks Leading to Thermal Equilibrium
The Metropolis algorithm generates correlated random walks across states X, of a time
reversible Markov Chain with ergodic state probabilities specified by a target Gibbs
(Boltzmann) distribution, without using the partition function Z. As mentioned earlier it is
often the case that states cannot be fully specified or accounted, especially for sample spaces of
multi-dimensional vectors, and hence normalization of state probabilities is a non tractable
problem

Computations of Integrals and Statistical Parameters

The MCMC methods can be used for numerical evaluation of integrals and probability
moments of multi-dimensional random variables (vectors) with missing elements or distorted
values due to noise or other limitations in exact specification of sample elements

Search for Global Extremal Points, Simulated Annealing
The MCMC iterative algorithms enable state visits that do not appear attractive in a myopic
view. Such behavior is typical in deepest descent algorithms that could be trapped in local
minima and miss global optimality. In MCMC such unlikely states are not fully ignored but are
registered with some reduced chance. This forms the basis of Simulated Annealing applied in

COMPYEX NG RISESL A TBRTRE M AR PORF§Izatiqn, e;g.the.Travelling Salesman Problem

In searching for an extremal point (e.g. highest hill
climbing), we allow for some steps to what
myopically appears as the wrong direction, but
eventually may lead to global minima or maxima

https://en.wikipedia.org/wiki/File:Hill Climbing with Simulated Annealing.gif



https://en.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif
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https://en.wikipedia.org/wiki/Markov _random field

model of joint probability distribution with nodes representing

random variables and edges denoting bi-directional
dependence among neighbors. Applications of MRF in image :.

A Markov Random Field (MRF) is an undirected graphical @

processing include (i) texture classification models and (ii) in
belief networks to estimate probability distribution for a subset 3 b
of nodes (hidden neurons) given values of another subset
(visible neurons) @

An example of a Markov &
random field. Each edge
represents dependency. In this

The Ising model is an MRF case that analyzes ferromagnetism
in statistical mechanics; it can potentially predict phase

transitions. The model consists of binary discrete random example: A depends on B and D.
variables representing magnetic dipole moments of “spins” in B depends onAand D. D

ft tat {_1 n 1} Th ins int t di t depends on A, B, andE. E
one of two states {—1, . The spins interact according to a K D R e § dorends
graph allowing each spin to interact with its neighbors. It was on E.

first developed for chain configurations by Ernst Ising in his
1925 Thesis, with no phase transitions identified. These were
later identified in 1944 for lattice two-dimensional
configurations (commonly used as a graph topology since then)


https://en.wikipedia.org/wiki/Markov_random_field
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The Ising model consists of a graph G of bipolar nodes and edges representing mutual
interactions. A nodes s is in a binary state (spin) y,€{-1, + 1}. If s & ¢, nodes s, t are
neighbors with interaction [, ;:  [¢; =+ 1if it pushes y, katy, to the same spin
(ferromagnetic) or ], = —1 if it pushes to opposite spins (antiferromagnetic)

In the lattice MRF G, the state of s directly depends on its neighbors teN(s) C G. Then the
equilibrium state vector is y(G) = [y; y5...ys y;...]! for feasible configurations of node states
Y, as they result from transition probabilities P (y,|y(G)) = P (. Iu(N(sm

https://en.wikipedia.org/wiki/lsing _model Xy M 1 S R, 3
The state of Xg depends only on its neighbors | ¢ “"‘T_ Xg X — X

| i B | |

| I - | |
Nige— XNy — XNig — X — XN

In thermal equilibrium y(G) converges to Gibbs (Boltzmann) ergodic probabilities, possibly
with external magnetic influence /1, on nodes t:

P(y(G) =3 exp(- UV ue E(y(G) ~-%__ Josysi—tx hye

If ], =] for all neighboring pairs s < tthen E(y (G)) = -] tysyt—luzjthtyt

4 S<_>
Convergence to equilibrium and approximation of the partition function Z may be handled
via the Metropolis-Hastings algorithm (if [, =] > 0 convergence leads to the
ferromaanetic phase)


https://en.wikipedia.org/wiki/Ising_model
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Motivation - Physics Case Study
Simulated Annealing was introduced in modeling of multiple particle physical system behavior
as a Markov Chain convergence to equilibrium with lowering the environment temperature
to a target low temperature T

* The system converges to Gibbs probabilities p; = % exp(—%) as T — 0, with lower energy

states exhibiting higher frequency of occurrence

The Metropolis algorithm is quick to converge towards equilibrium states at high
temperature T but slow at low temperatures. This motivated its variant via the Simulated
Annealing algorithm that comprises two modules:

* A cooling schedule towards the target low temperature T — 0 via iterative cooling
Ty T1,...,T,...,T at diminishing steps (e.g. T}, = aTy_1, 0.8 <a < 0.99)

* Identification of equilibrium states via the Metropolis algorithm, initially for a high
temperature T; that would entail a large range of state transitions and a reasonable
number of transitions (e.g. 10 iterations) to convergence. For the next round at a lower
T, — T, start at an initial state equal to the final state of the previous round T}

The Simulated Annealing algorithm may be trapped In local minima. Convergence to the
global minimum is not guaranteed for realistic cooling schedules and several repetitions
may be required with different schedules and hyperparameters
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Simulated Annealing (2/2)

Application in Combinatorial Optimization

The quest for thermodynamic equilibrium at low “temperatures” is translated to cost
minimization in complex problems of Combinatorial Optimization, especially if they involve

several local minima and a great number of states

* The state “energies” E; correspond to the numerical cost of discrete states. Temperature T is
an external control parameter that starts from a high initial value. In every subsequent round
(epoch) the temperature diminishes T'— aT by a hyperparameter o, 0 <a <1 until T =0

* In every round initiated by a lower temperature T we run the Metropolis algorithm, starting
from the final state of the previous round and searching for a new equilibrium state with

Gibbs probabilities p; = —exp (—E?) for E; and T. Acceptance of some seemingly wrong

L . E;~E;
transitions 1 — j to higher cost states E' > E; with non-zero probability exp (_T) may avert

entrapment to local minima. AsT — 0 thls probability is being reduced and the algorlthm

assumes that it reached the global minimum

Traveling Salesman Problem: Infamous NP-Complete
Combinatorial Optimization Problem
Consider a graph of N nodes (cities) with travel cost Cij

between nodes i kat j. Find the minimum total cost that a

Traveling Salesman has to pay to visit all nodes just once
https://en.wikipedia.org/wiki/File:Travelling salesman problem sol

ved with simulated annealing.gif

E= 852 T=12

N =125


https://en.wikipedia.org/wiki/File:Travelling_salesman_problem_solved_with_simulated_annealing.gif
https://en.wikipedia.org/wiki/File:Travelling_salesman_problem_solved_with_simulated_annealing.gif
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Simulated Annealing and Random Markov Fields - Ising Model inspired Combinatorial
Optimization algorithms, by seeking analogies with Statistical Physics terms (e.g. transitions to
thermal equilibrium states Gibbs/Boltzmann as they evolve in Monte Carlo Markov Chain
simulations e.g. Metropolis-Hastings)

Correspondence of Statistical Physics and Combinatorial Optimization

» Search for multi-dimensional state vectors of minimum cost or energy that a model with
stochastic transitions converges. Convergence can be accelerated by exercising external
control parameters (e.g. Bias in Machine Learning Systems and Neural Networks,
Temperature in Physical Systems)

» Optimization algorithms do not necessarily proceed to steps that may temporarily reduce cost
(or increase rewards). They rather follow random trajectories (e.g. Markov Random Walk
samples) and may visit a large range of states in order to bypass local minimum (or maximum)

TABLE 11.1 Correspondence between Statistical Physics and
Combinatorial Optimization

Statistical physics Combinatorial optimization
Sample Problem instance

State (configuration) Configuration

Energy Cost function

Temperature Control parameter
Ground-state energy Minimal cost

Ground-state configuration Optimal configuration




