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• The aim ofMCMC simulations is to record trajectories of a sample element (discrete timeseries) 𝑋𝑛 = 𝑥, 𝑛 = 1,2,… as a random walk of aMarkov Chain (MC) state with random yetcontrollable transitions. The resulting sample consists of elements approaching a Gibbsprobability distribution
• AMCMC program generates trajectories of state 𝑥 to thermal equilibrium and estimatesergodic probabilities π(𝑥) as the limit of relative frequencies 𝑓𝑛(𝑥) in 𝑛 transitions:

π 𝑥 = lim
𝑛→∞

𝑃 𝑋𝑛 = 𝑥 = lim
𝑛→∞

𝑓𝑛(𝑥)
𝑛Common use of Monte Carlo Simulations:• Estimation of moments (e.g. averages and 2nd moments) of discrete random variablesdrawn form a sample space tough (or impossible) to register• Evaluation of normalization (partition function) for models with intractable possible states
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• Sample values generated (sampled) viaMCMCmay be distributedaccording to the target Gibbs distribution but are correlated due to theMarkov random walk generation method• Sample values Independent Identically Distributed (IID) can besampled using simple methods, e.g. random generation of multi-dimensional points and counting those under the histogram curve toestimate metrics such as area under the curve (Rejection Sampling)
https://en.wikipedia.org/wiki/Rejection_sampling#Adaptive_rejection_sampling

https://en.wikipedia.org/wiki/Rejection_sampling#Adaptive_rejection_sampling


Approach & Limitations
• Generate a Target distribution π(𝑥) proportional to the relative frequency of values assumedby the random variable (or vector) 𝑋𝑛 over the sample space:∑

𝑥
π(𝑥) =∑

𝑥
𝑃 𝑋𝑛 = 𝑥 = 1

• π(𝑥) has a given form π(𝑥)∝π (𝑥), e.g. Gibbs distribution π(𝑥)∝ exp −𝐸(𝑥)
𝑇

, but cannot
generate samples directly as it may experience difficulties in registering the entire state spaceand computing the normalizing partition function

• The goal is to generate sample elements 𝑋𝑛 = 𝑥, 𝑛 = 1,2,… with frequency of appearances
π (𝑥), proportional to the target probability distribution π(𝑥)∝π (𝑥)

• The approximation of relative frequencies (histogram) 𝑃 𝑋𝑛 = 𝑥 →π(𝑥) is accomplished bysimulating state transitions as a random walk of an ergodicMarkov Chain with appropriatelyset transition probabilities. This technique, referred to asMarkov Chain Monte Carlo (MCMC)simulation, records the number of visits to states 𝑋𝑛 in trajectories and thus approximatesthe distribution π(𝑥)
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TheMCMCmethodsmay be powerful to sample random variables given a histogram or toapproximate complicated partition functions. However, they generate correlatedMarkovian time series, a problem when Independent Identically Distributed (IID) samplingis required
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• Given the form π (𝑥) of ergodic target distribution π(𝑥)∝π(𝑥) for 𝑥∈ 0,1,2,… we seek thegeneration of a time-reversibleMarkov Chain (MC) 𝑋𝑛 = 𝑥, approximately distributedaccording to π(𝑥)• Let 𝑋𝑛 = 𝑥𝑖. Generate a random variable 𝑌𝑛 = 𝑥𝑗 distributed according to an arbitrary butsymmetric around 𝑥𝑖 Proposal Conditional Density𝑄𝑌𝑛(𝑥|𝑋𝑛 = 𝑥𝑖):
𝑃 𝑌𝑛 = 𝑥𝑗 𝑋𝑛 = 𝑥𝑖 = 𝑃 𝑌𝑛 = 𝑥𝑖 𝑋𝑛 = 𝑥𝑗  • For the candidate next state 𝑌𝑛 = 𝑥𝑗 of theMC random walk:

Ø If π 𝑥𝑗 ≥ π 𝑥𝑖 the transition 𝑋𝑛→𝑌𝑛 is accepted⇒𝑋𝑛+1 = 𝑌𝑛 = 𝑥𝑗
Ø If π 𝑥𝑗 < π 𝑥𝑖  generate a random number 𝜉, uniformly distributed in (0,1)

If 𝜉 < π 𝑥𝑗
π 𝑥𝑖

=
π 𝑥𝑗
π 𝑥𝑖

the transition 𝑋𝑛→𝑌𝑛 is accepted⇒𝑋𝑛+1 = 𝑌𝑛 = 𝑥𝑗
Else the state remains at the same value⇒𝑋𝑛+1 = 𝑥𝑖• Caution in selecting the initial state 𝑋0 = 𝑥 and the symmetric Proposal Conditional Density

𝑄𝑌𝑛(𝑥|𝑋𝑛 = 𝑥𝑖): It should cover a wide range of 𝑥 so that theMC random walk would not
be trapped within subsets of states that rarely cross-communicate

π 𝑥𝑗
π 𝑥𝑖π(𝑥)∝π (𝑥)

𝑥𝑖

Common choices: (1) Gauss with average 𝜇 = 𝑥𝑖, 𝜎2 = 1; (2) Uniform Distribution 𝑥∈(𝑥𝑖−𝑎, 𝑥𝑖 + 𝑎)



Using theMetropolis Algorithm we generate a time-reversibleMC as a random walk of randomvariables 𝑋𝑛 satisfying the detailed balance equations that after 𝑛 transistions (steps) lead tostate 𝑥𝑖. Using a random variable generator we subsequently produce a state 𝑥𝑗 of anotherprocess 𝑌𝑛 with symmetric transition probabilities 𝑋𝑛→𝑌𝑛:
𝑃 𝑌𝑛 = 𝑥𝑗 𝑋𝑛 = 𝑥𝑖 = 𝑃 𝑌𝑛 = 𝑥𝑖 𝑋𝑛 = 𝑥𝑗This transition would result into energy change Δ𝐸 = 𝐸𝑗−𝐸𝑖

• If Δ𝐸 < 0 the transition leads to an acceptable lower energy state (𝑌𝑛 = 𝑥𝑗): 𝑋𝑛+1≔𝑌𝑛
• If Δ𝐸 > 0 the transition to (𝑌𝑛 = 𝑥𝑗) is accepted with probability exp(−Δ𝐸𝑇 ), with 𝑇 the“temperature” (or external control) of the environment and 𝑋𝑛+1≔𝑌𝑛. Else 𝑋𝑛+1≔𝛸𝑛. Theevolution of the random walk depends on independent Bernoulli Trials (accept transition ornot) is based on the (pseudo)random number 𝜉 uniformly distributed in 0,1 :

If 𝜉 < exp(−Δ𝐸
𝑇
), 𝑋𝑛+1≔𝑌𝑛; else 𝑋𝑛+1≔𝛸𝑛
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Generation of Random Samples Thermal Equilibrium ProbabilitiesTheMetropolis algorithm generates via simulation a time-reversible Markov Chain (MC) asa random walk 𝑋𝑛 = 𝑥𝑖 distributed according to the Gibbs thermal equilibrium probabilities

π(𝑥𝑖)∝ exp −𝐸(𝑥𝑖)
𝑇

. Their exact values depend on the Partition Function 𝑍 that satisfies
the normalization∑

𝑖
π(𝑥 𝑖) =

1
𝑍
∑
𝑖
exp −𝐸(𝑥 𝑖)

𝑇
= 1 in a usually complex state-space,

rendering its evaluation a combinatorially hard (NP-Complete) problem



Choice of Transition Probabilities• Generate a newMC with arbitrary symmetric transition probabilities 𝜏𝑖𝑗 from 𝑋𝑛 = 𝑥𝑖 toa new state 𝑌𝑛 = 𝑥𝑗:
𝜏𝑖𝑗 = 𝑃 𝑌𝑛 = 𝑥𝑗 𝑋𝑛 = 𝑥𝑖 = 𝑃 𝑌𝑛 = 𝑥𝜄 𝑋𝑛 = 𝑥𝑗 = 𝜏𝑗𝑖

𝜏𝑖𝑗 ≥ 0, ∀𝑖,𝑗 and 
𝑗
𝜏𝑖𝑗= 1,∀𝑖,

• TheMC 𝑋𝑛 will follow transition probabilities 𝑝𝑖𝑗 related to 𝜏𝑖𝑗 as follows:
𝑝𝑖𝑗 = 𝑃 𝑋𝑛+1 = 𝑥𝑗 𝑋𝑛 = 𝑥𝑖 =

𝜏𝑖𝑗
π𝑗
π𝑖
= 𝜏𝑖𝑗 exp(−𝐸𝑗−𝐸𝑖𝑇

)   for  π𝑗
π𝑖
< 1

𝜏𝑖𝑗                                               for  π𝑗π𝑖 ≥ 1
, 𝑖 ≠ 𝑗

and with 𝑝𝑖𝑖 consistent with the normalization equation∑
𝑗
𝑝 𝑖𝑗= 1,∀𝑖 :

𝑝𝑖𝑖 = 𝜏𝑖𝑖 +
𝑗≠𝑖
𝜏𝑖𝑗 1−

π𝑗
π𝑖

• All 𝑝𝑖𝑗 above abide with the detailed balance equations, yielding to Gibbs target
probabilities π𝑗 = 1𝑍 exp −

𝐸𝑗
𝑇
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The transition probabilities 𝑝𝑖𝑗 above depend only on ratios π𝑗π𝑖 = exp −
𝐸𝑗−𝐸𝑖
𝑇

= exp −Δ𝐸
𝑇bypassing the need of partition function 𝑍 evaluation (often an NP-Complete Problem)



• TheMCMC algorithm (by Nicholas Metropolis et.al., 1953) assumes symmetric transitionsand leads to time reversible chains that satisfy detailed balance equations. It converges to
Gibbs (Boltzmann) state probabilities π𝑖 = 1𝑍 exp −𝐸𝑖

𝑇
with proper definitions of 𝐸𝑖

• It was generalized byW.K. Hastings in 1970 to theMetropolis-Hastings (MH) algorithm
Ø Proposal Conditional Density:No symmetry is required in the (arbitrary) selection of𝑄𝑌𝑛 𝑥 𝑋𝑛 = 𝑥𝑖

𝑃 𝑌𝑛 = 𝑥𝑗 𝑋𝑛 = 𝑥𝑖 ≠ 𝑃 𝑌𝑛 = 𝑥𝑖 𝑋𝑛 = 𝑥𝑗  
Ø Probability of Acceptance of Transition 𝑋𝑛+1 = 𝑥𝑗:• If π 𝑥𝑗 × 𝑃 𝑌𝑛 = 𝑥𝑖 𝑋𝑛 = 𝑥𝑗 ≥ π 𝑥𝑖 × 𝑃 𝑌𝑛 = 𝑥𝑗 𝑋𝑛 = 𝑥𝑖 transition 𝑋𝑛→𝑌𝑛 isaccepted and 𝑋𝑛+1 = 𝑥𝑗
• Else, generate a random number 𝜉 uniformly distributed in (0,1)

ü If 𝜉 < π 𝑥𝑗
π 𝑥𝑖

×
𝑃 𝑌𝑛=𝑥𝑖 𝑋𝑛=𝑥𝑗
𝑃 𝑌𝑛=𝑥𝑗 𝑋𝑛=𝑥𝑖

the choice 𝑋𝑛→𝑌𝑛 is accepted & 𝑋𝑛+1 = 𝑥𝑗
ü If not 𝑋𝑛 remains in its current value and 𝑋𝑛+1 = 𝑥𝑖

• TheMetropolis algorithm is a special case ofMH with symmetric𝑄𝑌𝑛 𝑥 𝑋𝑛 = 𝑥𝑖

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGeneralization of the Metropolis Algorithm: The Metropolis-Hastings Algorithm (1/2)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGeneralization of the Metropolis Algorithm: The Metropolis-Hastings Algorithm (2/2)

𝑎 = 1,𝑋0 = 3.14Correct convergence in 104steps
𝑎 = 0.1,𝑋0 = 3.14Failure in 104 steps(State trapped in 1 lobe)

𝑎 = 0.2,𝑋0 = 3.14Partial failure in 104steps(State trapped in positive values)

Shortcoming of theMH Algorithm
• TheMH algorithm generates aMarkov Chain with ergodic probabilities as specified in agiven target histogram but the random variables of the sample are correlated
• If the requirement is to generate multi-dimensional sample random vectors 𝐗𝑛, thealgorithm may suffer by the curse of dimensionality
• The selection of Proposal Conditional Density𝑄𝑌𝑛 𝑥 𝑋𝑛 = 𝑥𝑖 and initial state 𝑋0 = 𝑥𝑖may be
of paramount importance for correct and fast convergence of theMH algorithmhttps://onlinelibrary.wiley.com/doi/full/10.1002/9781118445112.stat07834

• The influence of 𝑋0 diminishes if we ignore transient states, e.g. for steps 𝑛 ≤ 1000
Example: Simulation of 𝑋𝑛 conforming to a target distribution π(𝑥) proportional to
π 𝑥 = sin2 (𝑥) × sin2 (2𝑥) × 𝜑(𝑥) with 𝜑(𝑥) Normalℕ 0,1
Select𝑄𝑌𝑛 𝑥 𝑋𝑛 = 𝑥𝑖 = 1

2𝑎
𝕝𝑥𝑖−𝑎,𝑥𝑖+𝑎 𝑥 , uniform with average 𝑥𝑖 and range (𝑥𝑖 ± 𝑎)

https://onlinelibrary.wiley.com/doi/full/10.1002/9781118445112.stat07834


• Generates viaMonte Carlo simulations sample vectors of large dimensionality exhibitingGibbs ergodic probabilities. However, vectors are correlated due toMarkovian transitions
• The Gibbs Samplingmethod is a variant of theMetropolis iterative algorithm eventuallyleading to lower energy states, but allowing some opposite direction transitions withdiminishing probability as convergence is being approached
• Every iteration proceeds along each coordinate of the vector sample space. Transitionprobabilities for a specific coordinate depend on themost recent values of all othercoordinates evaluated at the present iteration, excluding the coordinate underconsideration
• It converges to Gibbs distributed samples, by estimating joint ormarginal ergodicprobabilities as relative frequency of visits to states during the simulation time horizon

Some Uses of Gibbs Sampling
• Efficient generation of sample vectors with Gibbs target distribution
• Complementing vectors containing non-observed or distorted coordinates assuming Gibbsdistributions (e.g. hidden variables in Deep Neural Networks)
• Estimation of functions of a variable that depends on Gibbs sample vector single coordinate,e.g. on the mean of values in a specific coordinate

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGibbs Sampling (1/2)



• Sample Space: Random Vectors of dimension 𝐾 at Iteration Step 𝑛 of the RandomWalk
𝐗(𝑛) = 𝑋1 𝑛  𝑋2 𝑛  … 𝑋𝐾 𝑛 T

• State Vector: Values 𝑥𝑖 𝑛  assigned to the 𝐾 Random Variables 𝑋𝑖 𝑛 of the coordinates ofthe random vector 𝐗(𝑛)
𝐱(𝑛) = 𝑥1 𝑛  𝑥2 𝑛  … 𝑥𝐾 𝑛 T

Algorithm (Stuart & Donald Geman, 1984)• 𝑛 = 0: Start from an arbitrary initial state vector 𝐱(0) = 𝑥1 0  𝑥2 0  … 𝑥𝐾 0 T

• 𝑛 → 𝑛 + 1: For 𝑖 = 1,…,𝐾 generate state values 𝑥𝑖 𝑛 + 1  for 𝑋𝑖 𝑛 + 1 with pseudo-random algorithm based on the conditional probability
𝑃 𝑋𝑖 𝑛 + 1 |{𝑥1 𝑛 + 1 … 𝑥𝑖−1 𝑛 + 1  𝑥𝑖+1  𝑛  … 𝑥𝐾 𝑛 }• Note 1: The condition involves coordinates 𝑗 ≠ 𝑖 evaluated up to this step and not 𝑋𝑖 𝑛• Note 2: The conditional probabilities can be inferred from joint probabilities (Bayes rule)and the system (environment) specificationshttps://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-7/07-gibbs.pdf

• The sequence 𝑥𝑖 𝑛 , 𝑖 = 1,…,𝐾 forms aMarkov Chain that converges (geometrically) to the
𝑖𝑡ℎ coordinate of state 𝐱 = [𝑥1 𝑥2 … 𝑥𝐾] at thermal equilibrium, withmarginal probability

lim
𝑛→∞

𝑃 𝑋𝑖(𝑛) = 𝑥𝑖(𝑛)|𝑥𝑖(0) = 𝑃(𝑋𝑖 = 𝑥𝑖)

The state vector 𝐗(𝑛) converges to and Gibbs joint probabilities
lim
𝑛→∞

𝑃 𝐗𝑛 = 𝐱𝑛 =𝑃 𝑋1 = 𝑥1,…,𝑋𝐾 = 𝑥𝐾 = 𝑃 𝐗 = 𝐱 = 1
𝑍
exp −𝐸(𝐱)

𝑇
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Machine Learning Applications: GenAIModels - Boltzmann Machine (ΒΜ), Restrictive ΒΜ

https://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-7/07-gibbs.pdf
https://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-7/07-gibbs.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSome Applications of MCMC Simulation Methods
Sampling of RandomWalks Leading to Thermal EquilibriumTheMetropolis algorithm generates correlated random walks across states 𝑋𝑛 of a timereversibleMarkov Chain with ergodic state probabilities specified by a target Gibbs(Boltzmann) distribution, without using the partition function 𝑍. As mentioned earlier it isoften the case that states cannot be fully specified or accounted, especially for sample spaces ofmulti-dimensional vectors, and hence normalization of state probabilities is a non tractableproblem Computations of Integrals and Statistical ParametersTheMCMCmethods can be used for numerical evaluation of integrals and probabilitymoments of multi-dimensional random variables (vectors) with missing elements or distortedvalues due to noise or other limitations in exact specification of sample elements
Search for Global Extremal Points, Simulated AnnealingTheMCMC iterative algorithms enable state visits that do not appear attractive in a myopicview. Such behavior is typical in deepest descent algorithms that could be trapped in localminima and miss global optimality. InMCMC such unlikely states are not fully ignored but areregistered with some reduced chance. This forms the basis of Simulated Annealing applied incomplex problems of combinatorial optimization, e,g. the Travelling Salesman Problem

https://en.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif

SEARCH FOR GLOBAL EXTREMAL POINTSIn searching for an extremal point (e.g. highest hillclimbing), we allow for some steps to whatmyopically appears as the wrong direction, buteventually may lead to globalminima or maxima

https://en.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif


• AMarkov Random Field (MRF) is an undirected graphicalmodel of joint probability distribution with nodes representingrandom variables and edges denoting bi-directionaldependence among neighbors. Applications ofMRF in imageprocessing include (i) texture classification models and (ii) inbelief networks to estimate probability distribution for a subsetof nodes (hidden neurons) given values of another subset(visible neurons)
• The Isingmodel is anMRF case that analyzes ferromagnetismin statistical mechanics; it can potentially predict phasetransitions. The model consists of binary discrete randomvariables representing magnetic dipole moments of “spins” inone of two states {−1, + 1}. The spins interact according to agraph allowing each spin to interact with its neighbors. It wasfirst developed for chain configurations by Ernst Ising in his1925 Thesis, with no phase transitions identified. These werelater identified in 1944 for lattice two-dimensionalconfigurations (commonly used as a graph topology since then)

Η κατάσταση του διπόλου 𝑋8 εξαρτάται μόνο από τα 𝑋3, 𝑋7, 𝑋9 και
𝑋13
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https://en.wikipedia.org/wiki/Markov_random_field

https://en.wikipedia.org/wiki/Markov_random_field


• The Isingmodel consists of a graph 𝐺 of bipolar nodes and edges representing mutualinteractions. A nodes 𝑠 is in a binary state (spin) 𝑦𝑠∈{−1, + 1}. If 𝑠 ↔ 𝑡, nodes 𝑠, 𝑡 areneighbors with interaction 𝐽s,𝑡:   𝐽s,𝑡 =+ 1 if it pushes 𝑦𝑠 και 𝑦𝑡 to the same spin
(ferromagnetic) or  𝐽s,𝑡 = −1 if it pushes to opposite spins (antiferromagnetic)

• In the latticeMRF 𝐺, the state of 𝑠 directly depends on its neighbors 𝑡∈𝑁(𝑠) ⊂ 𝐺. Then theequilibrium state vector is 𝒚(𝐺) = [𝑦1 𝑦2…𝑦𝑠 𝑦𝑡…]T for feasible configurations of node states
𝑦𝑠 as they result from transition probabilities 𝑃 𝑦𝑠 |𝒚(𝐺) = 𝑃 𝑦𝑠 |𝒚(𝑁(𝑠))

• In thermal equilibrium 𝒚(𝐺) converges to Gibbs (Boltzmann) ergodic probabilities, possiblywith external magnetic influence ℎ𝑡 on nodes 𝑡:
𝑃 𝒚 𝐺 = 1

𝑍
exp −𝐸(𝒚 𝐺 )

𝑇
με 𝐸 𝒚 𝐺   ≈ −∑

𝑠↔𝑡
 𝐽s,𝑡𝑦𝑠𝑦 𝑡−𝜇∑𝑡 ℎ 𝑡𝑦 𝑡• If  𝐽s,𝑡 = 𝐽 for all neighboring pairs 𝑠 ↔ 𝑡 then 𝐸 𝒚 𝐺   ≈ −𝐽∑
𝑠↔𝑡
𝑦𝑠𝑦 𝑡−𝜇∑𝑡 ℎ 𝑡𝑦 𝑡Convergence to equilibrium and approximation of the partition function 𝑍may be handledvia theMetropolis-Hastings algorithm (if  𝐽s,𝑡 = 𝐽 > 0 convergence leads to theferromagnetic phase)

The state of 𝑋8 depends only on its neighbors
𝑋3, 𝑋7, 𝑋9 ,𝑋13

Η κατάσταση του διπόλου 𝑋8 εξαρτάται μόνο από τα 𝑋3, 𝑋7, 𝑋9 και
𝑋13
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https://en.wikipedia.org/wiki/Ising_model

https://en.wikipedia.org/wiki/Ising_model


Motivation - Physics Case StudySimulated Annealing was introduced in modeling of multiple particle physical system behavioras aMarkov Chain convergence to equilibrium with lowering the environment temperatureto a target low temperature 𝑇
• The system converges to Gibbs probabilities 𝑝𝑖 = 1𝑍 exp −𝐸𝑖

𝑇
as 𝑇 → 0, with lower energy

states exhibiting higher frequency of occurrence
TheMetropolis algorithm is quick to converge towards equilibrium states at hightemperature 𝑇 but slow at low temperatures. This motivated its variant via the SimulatedAnnealing algorithm that comprises two modules:
• A cooling schedule towards the target low temperature 𝑇 → 0 via iterative cooling
𝑇0, 𝑇1,…,𝑇𝑘,…,𝑇 at diminishing steps (e.g. 𝑇𝑘 = 𝛼𝑇𝑘−1, 0.8 < 𝛼 < 0.99)

• Identification of equilibrium states via theMetropolis algorithm, initially for a hightemperature 𝑇0 that would entail a large range of state transitions and a reasonablenumber of transitions (e.g. 10 iterations) to convergence. For the next round at a lower
𝑇𝑘→𝑇𝑘+1 start at an initial state equal to the final state of the previous round 𝑇𝑘
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The Simulated Annealing algorithm may be trapped In local minima. Convergence to theglobal minimum is not guaranteed for realistic cooling schedules and several repetitionsmay be required with different schedules and hyperparameters



Application in Combinatorial OptimizationThe quest for thermodynamic equilibrium at low “temperatures” is translated to costminimization in complex problems of Combinatorial Optimization, especially if they involveseveral local minima and a great number of states
• The state “energies” 𝐸𝑖 correspond to the numerical cost of discrete states. Temperature 𝑇 isan external control parameter that starts from a high initial value. In every subsequent round(epoch) the temperature diminishes 𝑇 → 𝛼𝑇 by a hyperparameter 𝛼,  0 < 𝛼 < 1 until 𝑇 ≅ 0
• In every round initiated by a lower temperature 𝑇 we run theMetropolis algorithm, startingfrom the final state of the previous round and searching for a new equilibrium state with
Gibbs probabilities 𝑝𝑖 = 1𝑍 exp −𝐸𝑖

𝑇
 for 𝐸𝑖 and 𝑇. Acceptance of some seemingly wrong

transitions 𝑖 → 𝑗 to higher cost states 𝐸𝑗 > 𝐸𝑖 with non-zero probability exp(−𝐸𝑗−𝐸𝑖𝑇
), may avert

entrapment to localminima. As 𝑇 → 0 this probability is being reduced and the algorithmassumes that it reached the global minimum
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Traveling Salesman Problem: Infamous NP-CompleteCombinatorial Optimization ProblemConsider a graph of𝑁 nodes (cities) with travel cost 𝑐𝑖𝑗between nodes 𝑖 και 𝑗. Find the minimum total cost that aTraveling Salesman has to pay to visit all nodes just oncehttps://en.wikipedia.org/wiki/File:Travelling_salesman_problem_solved_with_simulated_annealing.gif 𝑁 = 125

https://en.wikipedia.org/wiki/File:Travelling_salesman_problem_solved_with_simulated_annealing.gif
https://en.wikipedia.org/wiki/File:Travelling_salesman_problem_solved_with_simulated_annealing.gif


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGΑanalogies of Statistical Physics & Combinatorial Optimization
Simulated Annealing and RandomMarkov Fields – Ising Model inspired CombinatorialOptimization algorithms, by seeking analogies with Statistical Physics terms (e.g. transitions tothermal equilibrium states Gibbs/Boltzmann as they evolve inMonte Carlo Markov Chainsimulations e.g.Metropolis-Hastings)

Correspondence of Statistical Physics and Combinatorial Optimization• Search for multi-dimensional state vectors ofminimum cost or energy that a model withstochastic transitions converges. Convergence can be accelerated by exercising externalcontrol parameters (e.g. Bias in Machine Learning Systems and Neural Networks,Temperature in Physical Systems)• Optimization algorithms do not necessarily proceed to steps that may temporarily reduce cost(or increase rewards). They rather follow random trajectories (e.g.Markov RandomWalksamples) and may visit a large range of states in order to bypass local minimum (or maximum)


