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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGStatistical Mechanics & Machine Learning
• Long-term statistics of sample element 𝐱(𝑛) are related to macroscopic concepts ofmechanical physics reaching dynamic equilibrium under a given temperature. There is ananalogy of terms such as entropy (disorder) with states and control parameters ofMachine Learning systems
• Statistical Mechanics offers inference models based on measured (and assumed) statisticsof input elements 𝐱(𝑛) that enable self-organization algorithms (e.g. via UnsupervisedLearning for data compression, classification into clusters, forming context-aware maps,correction of corrupted data) and generation of elements distributed according toprobabilistic assumptions of the sample space (Statistical Sampling - GenAI)
• The features of sample elements are encoded into random variables that constitute the𝑚coordinates of input sample vectors selected from the environment (sample space).Analogies with statistical mechanics may lead to better understanding the impact of the 𝑚 features of a large number of vectors used to train and validate a machine learning system

• Ground-braking application: Boltzmann Machine (Hinton – Sejnowski, 1983) used forprocessing and generation of images inspired by statistical mechanics models (named afterphysicist and philosopher Ludwig Boltzmann, 1844-1906)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGStatistical Mechanics: Gibbs Distribution, Partition Function, EntropyThermal Equilibrium of Physical System with many Degrees of Freedom• A physical system with many degrees of freedom reaches dynamic equilibrium at absolutetemperature 𝑇 in state 𝑖 of energy 𝐸𝑖 with probability 𝑝𝑖 (frequency of occurrence of 𝑖) givenby the Gibbs Distribution (1902) or Boltzmann (1868):
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• States 𝑖 of low energy 𝐸𝑖 tend to occur more often in equilibrium with probabilities:
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• The energy of state 𝑖 is 𝐸𝑖 = −𝑇 log(𝑍𝑝𝑖) with an average < 𝐸 >   =∑
𝑖
𝑝 𝑖𝐸 𝑖

• The total Free Energy 𝐹 (Helmholtz Free Energy) is:
𝐹= −𝑇 log 𝑍⇒ < 𝐸 > −𝐹 = −𝑇∑

𝑖
𝑝 𝑖log 𝑝 𝑖

• The entropy of the system is:
𝐻 ≜ −∑

𝑖
𝑝 𝑖log 𝑝 𝑖 ⇒  < 𝐸 > −𝐹 = 𝑇𝐻 ή 𝐹 =< 𝐸 > −𝑇𝐻Principle of Minimal Free Energy (Landau & Lifshitz, 1980)

In thermal equilibrium,𝐻 tends to its maximum, 𝐹 to its minimum and states followthe Gibbs Distribution

Normalization Constant (Zustadsumme) 𝑍: PartitionFunction



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGStochastic Processes – Time Series, Markov Property

Markov Property in Discrete Time Transition ProcessesA discrete time Stochastic Process exhibits the Markov property if transition probabilitiesfrom state 𝑋𝑛→𝑋𝑛+1 do not depend on its past state evolution {𝑋1,𝑋2,…,𝑋𝑛−1}
𝑃 𝑋𝑛+1 = 𝑥𝑛+1 𝑋𝑛 = 𝑥𝑛,…,𝑋1 = 𝑥1 = 𝑃 𝑋𝑛+1 = 𝑥𝑛+1 𝑋𝑛 = 𝑥𝑛 

• Stochastic Process of State 𝑋(𝑡) with transitions from time 𝜏 to time 𝑡 of the same sampleelement (time series outcome, trajectory) with probability 𝑃 𝑋 𝑡 = 𝑎 |[𝑋 𝜏 = 𝑏]• Stochastic Process in Discrete Transition Times of State  𝑋𝑛 ≜ 𝑋 𝑛 × ∆𝑡 with transitionsfrom 𝜏 = (𝑘 × ∆𝑡) to 𝑡 = (𝑛 × ∆𝑡) of the same sample element (discrete time series outcome,trajectory) with probability 𝑃(𝑋𝑛 = 𝑎|𝑋𝑘 = 𝑏}
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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGMarkov Processes of Discrete State - Markov Chains
Consider a Markov Process of Discrete States  𝑋𝑛 = 𝑖, referred to asMarkov Chain, withDiscrete Transition Times for (𝑋𝑛 = 𝑖) → (𝑋𝑛+1 = 𝑗) at instant 𝑛, independent of the past
Assume that transition probabilities in one step are constant and independent of instant 𝑛:

𝑝𝑖𝑗 = 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖 ≥ 0,  
𝑗
𝑝𝑖𝑗 = 1  ∀𝑖

If 𝑖 ≤ 𝐾 the transition probabilities are elements of the transition matrix 𝐏 with rowelements adding to one:∑
𝑗
𝑝 𝑖𝑗 = 1 (stochastic matrix):

𝐏 =
𝑝11 ⋯ 𝑝1𝐾
⋮ ⋱ ⋮
𝑝𝐾1 ⋯ 𝑝𝐾𝐾

The transition probabilities in 𝑚 steps are 𝑝(𝑚)𝑖𝑗 = 𝑃 𝑋𝑛+𝑚 = 𝑗 𝑋𝑛 = 𝑖 , 𝑚 = 1,2,… are given
by the Chapman-Kolmogorov identity:
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(𝑛)
𝑘𝑗  ,   𝑚,𝑛 = 1,2,…



𝑑=3

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGDefinitions of Markov Chain States
• Recurrent States: The process visits these states infinitely often in an infinite time-horizon
• Transient States: After a finite number of transition steps, the process stops visiting thesestates
• Periodicity: If all recurrent states are grouped in 𝑑 disjoint subsets 𝑆1,𝑆2,…,𝑆𝑑 withtransitions allowed from a given subset to a next, then visits into subsets 𝑆𝑘 occurperiodically, every 𝑑 transitions:

If 𝑖∈𝑆𝑘, 𝑝𝑖𝑗 > 0 ⇒  𝑗∈𝑆𝑘+1 𝑗∈𝑆1     
                  for 𝑘 = 1,…,𝑑−1

for 𝑘 = 𝑑
• Irreducible Markov Chains:Two states communicate 𝑖 ↔ 𝑗 if the probability of reaching eachother in finite number of steps is non-zero

Ø If 𝑖 ↔ 𝑗 & 𝑖 ↔ 𝑘⇒ 𝑖 ↔ 𝑘 (transitivity)
Ø If all states communicate the chain is Irreducible

• Classes: States can be classified in subsets. Open classes allow exits to a different class.Closed classes do not allow external transitions and (possible after a transient interval) theprocess is limited within this subset. If there is a single closed calss, the chain is Irreducible



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSummary of Markov Chain State Classification



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGTransition Properties of Markov Chain (1/2)
• Mean Recurrence TimeIn a Markov Chain (MC) theMean Recurrence Time E 𝑇𝑖(𝑘) is defined as the averagenumber of transitions (steps) for a Recurrent State 𝑖 to cycle (return to itself), if itaccomplished 𝑘−1 cycles from 𝑖 to 𝑖. The relative occurrence of state 𝑖 is proportional tothe Steady State Probabilities:

π𝑖 =
1

E 𝑇𝑖(𝑘)If E 𝑇𝑖(𝑘) < ∞ then π𝑖 > 0 and 𝑖 is Positive Recurrent. Else π𝑖 = 0 and 𝑖 is NullRecurrent
• Steady State Probabilities, ErgodicityAfter 𝑙 cycles into a Positive Recurrent State 𝑖, the proportion of steps (time) theMCresides in state 𝑖 (Sojourn Time) is:

𝜈𝑖 𝑙 =
𝑙

∑ 𝑙
𝑘=1 𝑇 𝑖(𝑘)

The Recurrence Times 𝑇𝑖(𝑘) form a series of Independent Identically Distributed (IID)random variables. For 𝑙 →∞ the proportions of transition steps theMC resides in state
𝑖 approach to the Steady State Probabilities π𝑖:

lim
𝑙→∞

𝜈𝑖 𝑙 = π𝑖,  𝑖 = 1,2,…,𝐾
The limit formula defines Ergodicity of state 𝑖 (Ensemble Average = Time Average)



𝑖

𝑛

Sample State Trajectory 𝑥𝑖 𝑛 = 𝑖 

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGTransition Properties of Markov Chain (2/2)

For State 𝑥3, 𝑖 = 3: 𝑇3(𝑘), 𝜈3 𝑙 , 𝑘∈ 1,2,…,5 , 𝑙 = 5
§ 𝑇3 1 = 0
§ 𝑇3 2 = 2
§ 𝑇3 3 = 2
§ 𝑇3 4 = 2
§ 𝑇3 5 = 4

§ 𝜈3 5 = 5
0+2+2+2+4

= 5
10
= 0.5 →𝜋3 = 0.4652

MC State Transition Diagram: 3 State Example

π1 = 0.3953   π2 = 0.1395   π3 = 0.4652



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGStationary Distribution of MC - Ergodic Probabilities• Steady-state probabilities π𝑖 of aMC are evaluated by measuring the relative frequencythat state 𝑖 occurs in an infinite (very large) repetition of sample outcomes
• Equivalently and for irreducible states steady-state probabilities can be deduced(measured) from the trajectory of a single outcome (time series) as the fraction of timethat the process spends in 𝑖 over an infinite (very lengthy) horizon.
• SuchMC is defined as ergodic and the steady-state probabilities π𝑖 as ergodicprobabilities. An irreducible non-periodicMC is always ergodic

Convergence of State Probabilities to Ergodic DistributionsMC state probabilities of 𝑋𝑖, 𝑖 = 1,2,…,𝐾 at transition step 𝑛 = 0,1,2… define a (1 × 𝐾)vector 𝛑(𝑛) evolving according to the (𝐾 × 𝐾) stochastic transition matrix 𝐏 starting froman initial conditions 𝛑(0):
𝛑(𝑛) = π(𝑛)1  π(𝑛)2 …π(𝑛)𝐾 ,  𝛑(𝑛) = 𝛑(𝑛−1)𝐏 = 𝛑(𝑛−2)𝐏2 = … = 𝛑(0)𝐏𝑛

The ergodic probabilities 𝛑 = π1 π2 …π𝐾 are defined as the limit 𝛑(𝑛) with 𝑛 →∞:
lim
𝑛→∞

𝛑(𝑛) = 𝛑(0) × lim
𝑛→∞

𝐏𝑛 = 𝛑(0)
π1 … π𝐾
⋮ ⋱ ⋮
π1 … π𝐾

= 𝛑(0)
𝛑
⋮
𝛑
=

𝐾

𝑗=1
π(0)𝑗 ×𝛑 = 1 × 𝛑 = 𝛑

Hence 𝛑 = lim
𝑛→∞

𝛑(𝑛) is independent of the initial condition 𝛑(0)and can be evaluated by
solving the linear system of 𝐾−1 Global Equilibrium Equations, with an additionalnormalization linear equation to enforce linear independence of 𝐾 equations:

π𝑗 =∑𝐾
𝑖=1π 𝑖𝑝 𝑖𝑗   𝑗 = 1,2,…,𝐾 or 𝛑 = 𝛑𝐏 and ∑𝐾

𝑗=1π 𝑗 = 1



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGExamples of Ergodic Markov Chains
State Transition DiagramsStates are denoted as circles 𝑥1,𝑥2,… and transitions 𝑥𝑖→𝑥𝑗 as arrows with probabilities 𝑝𝑖𝑗

𝐏 = 1/4 3/4
1/2 1/2 ,  𝛑(0) = 1/6 5/6

𝛑(1) = 𝛑(0)𝐏 = 11/24 13/24

𝐏2 = 0.4375 0.5625
0.3750 0.6250

𝐏3 = 0.4001 0.5999
0.3999 0.6001

𝐏4 = 0.4000 0.6000
0.4000 0.6000

𝜋1 = 0.4,     𝜋2 = 0.6
Convergence in 4 iterations (steps)

𝐏 =
0 0 1
1/3 1/6 1/2
3/4 1/4 0

Steady-state transition linear system
π1 =

1
3
π2 +

3
4
π3

π2 =
1
6
π2 +

1
4
π3

π3 = π1 +
1
2
π2

π1 + π2 + π3 = 1 (normalization)
𝜋1 = 0.3953,       𝜋2 = 0.1395,  𝜋3 = 0.4652

Calculation of Ergodic Probabilities



• In thermal equilibrium a system that reaches state probabilities Gibbs π𝑖 = 1
𝑍
𝑒𝑥𝑝 −𝐸𝑖

𝑇
with

𝑍 the Partition Function, state transitions 𝑖 → 𝑗 are balanced in the long term by reversetransitions 𝑗 → 𝑖

• In this case Detailed Balance Equations hold withthe ergodic probabilities 𝜋𝑖 satisfyingGlobal Balance Equations as expected forall Markov Chains (MC):
π𝑖𝑝𝑖𝑗 = π𝑗𝑝𝑗𝑖

𝐾

𝑖=1
π𝑖𝑝𝑖𝑗 =

𝐾

𝑖=1

π𝑖
π𝑗
𝑝𝑖𝑗 π𝑗 =

𝐾

𝑖=1
𝑝𝑗𝑖π𝑖 = π𝑖 

• The Detailed Balance Equations (unlike the Global Balance Equations) do not hold for allMC’s. AnMC that abides by them is referred to as Time Reversible with forward transitionprobabilities 𝑝𝑖𝑗 and backwards with transition probabilities 𝑝𝑗𝑖 = π𝑖π𝑗𝑝𝑖𝑗
• The ergodic state probabilities π𝑖 are much simpler to analyze if time-reversibility holds(e.g. for queuing networks under conditions yielding product-form state probabilities).Unfortunately, this is not true in many realistic models but holds for systems in thermalequilibrium that converge to Gibbs statistics (as in manyMachine Learning systems)

π1 = 0.4,     π2 = 0.6
π1𝑝12 π2𝑝21

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGDetailed Balanced Equations, Time Reversibility


