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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Statistical Mechanics & Machine Learning

Long-term statistics of sample element x(71) are related to macroscopic concepts of
mechanical physics reaching dynamic equilibrium under a given temperature. There is an
analogy of terms such as entropy (disorder) with states and control parameters of
Machine Learning systems

Statistical Mechanics offers inference models based on measured (and assumed) statistics
of input elements x(n) that enable self-organization algorithms (e.g. via Unsupervised
Learning for data compression, classification into clusters, forming context-aware maps,
correction of corrupted data) and generation of elements distributed according to
probabilistic assumptions of the sample space (Statistical Sampling - GenAl)

The features of sample elements are encoded into random variables that constitute the m
coordinates of input sample vectors selected from the environment (sample space).

Analogies with statistical mechanics may lead to better understanding the impact of the m
features of a large number of vectors used to train and validate a machine learning system

Ground-braking application: Boltzmann Machine (Hinton - Sejnowski, 1983) used for
processing and generation of images inspired by statistical mechanics models (named after
physicist and philosopher Ludwig Boltzmann, 1844-1906)
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Statistical Mechanics: Gibbs Distribution, Partition Function, Entropy
Thermal Equilibrium of Physical System with many Degrees of Freedom
A physical system with many degrees of freedom reaches dynamic equilibrium at absolute
temperature T in state i of energy E; with probability p; (frequency of occurrence of i) given
by the Gibbs Distribution (1902) or Boltzmann (1868):
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States 1 of low energy E; tend to occur more often in equilibrium with probabilities:
—lex (—E) Z—Xex (—E)

Normalization Constant (Zustadsumme) Z: Partition
The energy &t&ti@#is E; = —T log(Zp;) with an average <E > =Y p;E;
1

The total Free Energy F (Helmholtz Free Energy) is
F=-TlogZ= <E>-F= —Tzipilog P

The entropy of the system is:

H——V nlncrn = <FE>-T_THNWF =<FE>_-TH
Pr|nC|pIe 6f Minimal Free Energy (Landau & Lifshitz, 1980)

In thermal equilibrium, H tends to its maximum, F to its minimum and states follow
the Gibbs Distribution
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Stochastic Processes - Time Series, Markov Property
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» Stochastic Process of State X(t) with transitions from time 7 to time t of the same sample
element (time series outcome, trajectory) with probability P{[X (t) = a] |[X (1) = D]}
* Stochastic Process in Discrete Transition Times of State X, = X (n X At) with transitions

from © = (k X At) to t = (n X At) of the same sample element (discrete time series outcome,
trajectory) with probability P(X,, = a|X; = b}

Markov Property in Discrete Time Transition Processes
A discrete time Stochastic Process exhibits the Markov property if transition probabilities
from state X, — X, do not depend on its past state evolution {X{,X5,...,X,,_1}

P(Xn+1 = xn+1|Xn = xn/"'/Xl = xl} = P(Xn+1 = xn+1|Xn = Xy }
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Markov Processes of Discrete State - Markov Chains

Consider a Markov Process of Discrete States X, =i, referred to as Markov Chain, with
Discrete Transition Times for (X,, =1) — (X,,,1 =J) at instant n1, independent of the past

Assume that transition probabilities in one step are constant and independent of instant n:

pij =P (X1 =j|1X, =1) 20, Zpij =1 Vi
j
If i < K the transition probabilities are elements of the transition matrix P with row
elements adding to one: ! Pij = 1 (stochastic matrix):
]
P11 - PiK
P=|: .. :

Pk1 *° PkK

The transition probabilities in m steps are pl(.]’.”) =P (X, =j|1X,, =0), m =12,... are given
by the Chapman-Kolmogorov identity:

(m+1)
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Definitions of Markov Chain States

Recurrent States: The process visits these states infinitely often in an infinite time-horizon

Transient States: After a finite number of transition steps, the process stops visiting these
states

Periodicity: If all recurrent states are grouped in d disjoint subsets S¢,S,,...,5; with

periodically, every d transitions:
: JESk+1 fork=1,..d-1
If i€S,, p. >0 = 1 . e
k Pij []651 fork =d
Irreducible Markov Chains:
Two states communicate i < j if the probability of reaching each
other in finite number of steps is non-zero
> Ifi &j&i o k=1 o k(transitivity)
» If all states communicate the chain is Irreducible

Classes: States can be classified in subsets. Open classes allow exits to a different class.
Closed classes do not allow external transitions and (possible after a transient interval) the
process is limited within this subset. If there is a single closed calss, the chain is Irreducible
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Summary of Markov Chain State Classification

State

Transient Recurrent

Positive recurrent Null recurrent
T > 1) a; =0

/ \ J
Apenodlc Perlodlc
llmp M llmp —dﬂ' as n — =,

as n — where dis an integer
greater than 1
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Transition Properties of Markov Chain (1/2)

* Mean Recurrence Time
In a Markov Chain (MC) the Mean Recurrence Time E[T;(k)] is defined as the average
number of transitions (steps) for a Recurrent State i to cycle (return to itself), if it
accomplished k-1 cycles from i to i. The relative occurrence of state i is proportional to

the Steady State Probabilities:
1

T, =———
E[T;(k)]
If E[T;(k)] < oothen m; >0 and i is Positive Recurrent. Else 7i; =0 and i is Null
Recurrent

» Steady State Probabilities, Ergodicity
After [ cycles into a Positive Recurrent State i, the proportion of steps (time) the MC

resides in state i (Sojourn Time) is:

v () = ——

Y1 Ti(k)

The Recurrence Times T)(k) form a series of Independent Identically Distributed (lID)
random variables. For [ — oo the proportions of transition steps the MC resides in state
i approach to the Steady State Probabilities ;:

limv,() =m;,i=12,..,K

[—00

The limit formula defines Ergodicity of state i (Ensemble Average = Time Average)
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Transition Properties of Markov Chain (2/2)

MC State Transition Diagram: 3 State Example

71 =0.3953 1, =0.1395 73 =0.4652

Sample State Trajectory x;(n) =i For State x5, i = 3: T5(k), v3(I), ke{1,2,..,5},1 =5
| L =2
D997 0 | £a
é ?Z? é/é 5 " T3(5) =4
7 7 7,
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Stationary Distribution of MC - Ergodic Probabilities
Steady-state probabilities 1t; of a MC are evaluated by measuring the relative frequency
that state i occurs in an infinite (very large) repetition of sample outcomes

Equivalently and for irreducible states steady-state probabilities can be deduced
(measured) from the trajectory of a single outcome (time series) as the fraction of time
that the process spends in i over an infinite (very lengthy) horizon.

Such MCis defined as ergodic and the steady-state probabilities Tt; as ergodic
probabilities. An irreducible non-periodic MC is always ergodic

Convergence of State Probabilities to Ergodic Distributions
MC state probabilities of X, 1 =1,2,...,K at transition step n = 0,1,2... define a (1 X K)
vector 1 evolving according to the (K x K) stochastic transition matrix P starting from
an initial conditions 1t(9):

n = [Tc(l”) T(gl)...ﬂ%)] S ) =g-Vp = gn-2)p2 = = gO)pn
The ergodic probabilities T = [T, T, ...Tg] are defined as the limit ™ with n — oco:
T(l TCK T K
lim 7™ = O x limP* =r@| : =nO]: :Z n](-o) XM=1Xm=m
n—00 n—00 1-(1 .. T(K T ]:1
Hence 1t = lim nt™ is independent of the initial condition 1®and can be evaluated by
n—-00

solving the linear system of K—1 Global Equilibrium Equations, with an additional

normalization ljnear equation to enforce linear independence of K equations:
K - K

T, =31 TP ] = 1,2,..,Korm =mP and 2]-:1 T = 1
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Examples of Ergodic Markov Chains

State Transition Diagrams

States are denoted as circles xq,x5,... and transitions x; — x; as arrows with probabilities p;

Calculation of Ergodic Probabilities

RN Y]

P =

(@) ()
4

N =

_[1/4 34 _ _
P—[l/z 1| =116 S5/l 0o 0 1
P=|1/3 1/6 1)2
n® =nOP =[11/24 13/24] 34 1/4 0
p2 _ [04375  0.5625 Steady-state tra{]sition linear system
10.3750 0.6250. 4 25”2“‘1“3
p3 _ [0.4001 0.5999 11
10.3999 0.6001. ﬂ2=gﬂz+1ﬂ3
p4 _ [0-4000 0.6000 S
10.4000 0.6000. 2

=04, 7,=06 T4 + T, + T3 = 1 (normalization)

Convergence in 4 iterations (steps) 1y =0.3953, 1y =0.1395, 73 =0.4652
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Detailed Balanced Equations, Time Reversibility

* In thermal equilibrium a system that reaches state probabilities Gibbs Tt; = %exp(—%) with

Z the Partition Function, state transitions i — j are balanced in the long term by reverse
transitionsj — i

* In this case Detailed Balance Equations hold with
the ergodic probabilities 7t; satisfying
Global Balance Equations as expected for
all Markov Chains (MC):

TGPij = TP

Z;“i’%‘ :EK( %) 2 P =T

* The Detailed Balance Equations (unlike the Global Balance Equations) do not hold for all
MC's. An MC that abides by them is referred to as Time Reversible with forward transition
probabilities p;; and backwards with transition probabilities p;; = %pij

j

* The ergodic state probabilities t; are much simpler to analyze if time-reversibility holds
(e.g. for queuing networks under conditions yielding product-form state probabilities).
Unfortunately, this is not true in many realistic models but holds for systems in thermal
equilibrium that converge to Gibbs statistics (as in many Machine Learning systems)



