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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSome Special Neural Network Configurations - Supervised Learning

Support Vector Machines (SVM): Binary classification intoregions of maximum linear separation via supervisedlearning. Regions are separated by linear neutral borderzones as wide as possible, defined by support vectors asshown in the two-dimensional adjacent figure. Sampleelements belong in two classes, depicted as blue squares andcircles. In case of non-separable patterns, regions result fromthe training sample that minimize classification errors

Convolutional Neural Networks (CNN): Multilayer Perceptroncategory preferred for classification of two-dimensionalexamples (e.g. pattern recognition of images) via supervisedlearning. The CNN simplification results by decoupling the netinto loosely connected parts with common receptive fieldsamong subsets of input element features and exhibitingconvolutional induced local fields



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSome Special Neural Network Configurations – Unsupervised Learning & LLM
K - Means Clustering: Self-organization of observed sample elements 𝐱𝑖 into K clusters via
unsupervised learning, e.g. clustering based on proximity of Euclidean Distances 𝐱𝑖−𝐱𝑗

2

Principal Components Analysis (PCA): Unsupervised learning used to map sample vectors ofhigh dimensionality, e.g. images, 𝐱 = 𝑥1 𝑥2 … 𝑥𝑚 T into output vectors 𝐲 = 𝑦1 𝑦2… 𝑦𝑙 T of 𝑙 ≪
𝑚 Principal Components by selecting the most important features (feature engineering). Usedto overcome the curse of dimensionality for image reconstruction, pattern classification…
Self-Organizing Maps (SOM): Neurons are placed on vertices of a two-dimensional lattice andconverge into maps of location-based significant traits (features) via competitive unsupervisedlearning. Identification of active neurons is learned by boosting or attenuating weights of pathsbetween neurons in the lattice, aiming at the final winner selection (winner takes all)
Large Language Models (LLM): Used to identify missing words (masked tokens) or sentences,generate (via GenAI) answers to chatbot and/or search engine queries, translate to alternatenatural languages… They employ Natural Language Processing (NLP) algorithms (e.g. AttentionMechanism based Transformers), may rely on special hardware (e.g. GPUs) and can requireextensive pre-training in massive datacenters (possibly months of parameter tuning withbillions of data elements). Offered (free or for-a-fee) to tens of millions of end-users as a cloudservice via the Web, usually with a reasoning option. Users may upload reduced models in theirmachines (e.g. laptops). Very recent killer applications: ChatGPT (OpenAI), DeepSeek. Risksinclude prediction errors - hallucinations, IPR infringement, plagiarism, excessive reliance toblack-box Artificial Intelligence methods…

Tutorial by Mirella Lapata https://www.youtube.com/watch?v=_6R7Ym6Vy_I&t=1894s

https://www.youtube.com/watch?v=_6R7Ym6Vy_I&t=1894s


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGUnsupervised Learning
• Unsupervised learning is based on estimating a-priori probabilities 𝑝(𝐱) of sample elements(vectors) 𝐱 = 𝑥1 𝑥2… 𝑥𝑚 Τ with𝑚 features 𝑥𝑖 (e.g. K -Means Clustering – selection of Kcenters of gravity or cluster centroids and assignment of vectors 𝐱 into closest centroids)
• It is based on input feature statistics estimated from unlabeled training examples andassumptions of the environment behavior (e.g. Hebb’s rule). The system assigns an output
𝑦 = ℎ𝐰(𝐱) (e.g. compressed image or class of 𝐱) consistent with models inferred from userrequirements and conforming to pre-stored experience

• Apart from training & validation examples used to design the system, test data arenormally added to assess a trained model ℎ𝐰 ∙  generalization capability and overfittingrisk
• Unsupervised learning is a widely employed method of self organization (e.g. Self-Organizing Maps - SOM, Autoencoders) and of principal component filtering for efficientstorage - processing – classification of sample vectors with massive number of features(typical in speech - text - image processing applications and pattern recognition modelsNote: Definition of Sample, Sample Elements & Sample Space in StatisticsA sample is defined as a subset of a superset, referred to as sample space, thatapproximately exhibits its statistical properties. It consists of 𝑁 sample elements(examples), typically vectors 𝐱 = 𝑥1 𝑥2… 𝑥𝑚 Τ with coordinates 𝑥𝑖 encoding the

𝑚 features (characteristics) of 𝐱



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
K - Means Clustering via Unsupervised Learning

Encoding into K clusters of𝑁 unlabeled training examples 𝐱(𝑛) = 𝑥1 𝑛  𝑥2 𝑛 … 𝑥𝑚(𝑛) Τ• Determination of Encoder 𝐶 𝑛 = 𝑗: 𝐱(𝑛),  𝑛 = 1,2,…,𝑁 belongs to cluster 𝑗 = 1,2,…,𝐾• Symmetric Measure of Similarity: 𝑑 𝐱 𝑛 ,𝐱(𝑛′) = 𝑑 𝐱 𝑛′ ,𝐱(𝑛)
Example: Euclidean Distance, 𝑑 𝐱 𝑛 ,𝐱(𝑛′) ≜ 𝐱 𝑛 −𝐱(𝑛′) 2

• Estimation of centroid 𝛍𝑗 as center of gravity of cluster 𝑗 = 1,2,…,𝐾: Mean Euclidean
Distance of 𝐱 𝑖 from 𝛍𝑗 for all encoder options 𝐶 𝑛 = 𝑗

• Cost: 𝐽 𝐶 = 1
2
∑𝐾
𝑗=1∑𝐶 𝑛 =𝑗

∑
𝐶 𝑛′ =𝑗 𝐱 𝑛 −𝐱(𝑛′) 2 =∑𝐾

𝑗=1∑𝐶 𝑛 =𝑗
𝐱 𝑛 −𝛍 𝑗

2

• Minimization Criterion: Variance  𝛔2𝑗 ≜∑𝐶 𝑛 =𝑗
𝐱 𝑛 −𝛍 𝑗

2, min
𝐶
𝐽 𝐶 =min

𝐶
∑𝐾
𝑗=1 𝛔2𝑗

InitializeCentroids Next ClusterFormationDetermination ofNew CentroidsInitial ClusterFormation

Example: 𝐾 = 3,  𝑁 = 12(https://en.wikipedia.org/wiki/K-means_clustering)

Self-Organization of𝑁 Training Sample Points into K Clusters• Initialization: Arbitrary selection of hyperparameter K• Assign the𝑁 training sample points 𝐱(𝑛) to the closest centroid• Update centroid selection 𝛍𝑗, 𝑗 = 1,2,…,𝐾 & re-evaluate assignment of encoders 𝐶 𝑛 = 𝑗
• Efficient & easy to code algorithm but with no formal convergence proof• The choice of K may involve several trials and variance comparisons by increasing K up toknee of the minimum cost

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGPrincipal Components Analysis - PCA
The Curse of Dimensionality:In a sample space of vectors 𝐱 = 𝑥1 𝑥2… 𝑥𝑚 T, encoding of features (categorical orcontinuous) may lead to a large number of dimensions 𝑚 (e.g. number of pixels in an image)Rule of Thumb: For statistically meaningful encoding of the 𝑚 features, it is empiricallyrequired a number of𝑁 sample vectors that is a multiple of𝑚(e.g.𝑁 ≫ 5𝑚, https://en.wikipedia.org/wiki/Curse_of_dimensionality)
Reduction of Dimensionality - Principal Components:A vector space of 𝐱 = 𝑥1 𝑥2 … 𝑥𝑚 T the𝑚 coordinates can be mapped into orthogonal(uncorrelated) Principal Components, ordered by their significance. The next step is totruncate insignificant components and obtain an output vector 𝐲 = 𝑦1 𝑦2… 𝑦𝑙 T by selectingthe 𝑙 ≪ 𝑚 principal features
Methods for Selecting Principal Components:• The Covariance Method: Statistical analysis of the training sample space, lineartransformation of its𝑚 coordinates using an orthonormal basis and selecting the 𝑙 ≪ 𝑚principals via Linear Algebra methods (similar to the Karhunen - Loève Expansion withorthogonal deterministic basis functions in Time-Series Theoryhttps://en.wikipedia.org/wiki/Kosambi%E2%80%93Karhunen%E2%80%93Lo%C3%A8ve_theorem)• The Hebbian Learning Method: Via self-organized Neural Network models with Hebbianlocal tuning in unsupervised learning

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Kosambi%E2%80%93Karhunen%E2%80%93Lo%C3%A8ve_theorem
https://en.wikipedia.org/wiki/Kosambi%E2%80%93Karhunen%E2%80%93Lo%C3%A8ve_theorem


Covariance Method - Definitions
• Input: Sample elements (vectors) 𝐱 = 𝑥1 𝑥2… 𝑥𝑚 Tof𝑚 features encoded in 𝑥𝑖 values
• Coordinates 𝑥𝑖: Sample Values of Random Variables 𝑋𝑖, the coordinates of random vectors
𝚾 = 𝑋1 𝑋2… 𝑋𝑚 T of the training sample space. We assume that E 𝐗 = E 𝑋𝑖 = 0

• Correlation Matrix: The symmetric matrix (𝑚 × 𝑚) 𝐑 = E[𝐗 𝐗T] with elements E 𝑥𝑖 𝑥𝑗 ,
eignevectors 𝐪𝑗 and eigenvalues λ𝑗: 𝐑𝐪𝑗 = λ𝑗𝐪𝑗,  𝑗 = 1,2,…,𝑚 in decreasing order of λ𝑗

λ𝑗𝐪T𝑗 𝐪𝑘 =
1,  𝑘 = 𝑗
0,  𝑘 ≠ 𝑗      and     𝐪T𝑗 𝐑𝐪𝑘 = λ𝑗,  𝑘 = 𝑗

0,  𝑘 ≠ 𝑗
• Principal Components: The eigenvectors 𝐪𝑗 define Orthonormal Principal directions that

via linear transformation map a random vector 𝐱 = 𝑥1 𝑥2… 𝑥𝑚 T  of𝑚 coordinates 𝑥𝑖 intothe random vector 𝐚 = 𝑎1 𝛼2… 𝛼𝑚 T = 𝐱T𝐪1   𝐱T𝐪2 …  𝐱T𝐪𝑚 of𝑚 coordinates 𝑎𝑖referred to as Principal Components
ü The order of 𝛼𝑗’s follows the decreasing order of λ𝑗 = 𝐪T𝑗 𝐑𝐪𝑗 = 𝑣𝑎𝑟 𝐴𝑗 ≜ σ2𝑗 , with 𝐴𝑗a random variable with sample value 𝛼𝑗
ü The original coordinates 𝑥𝑖 are uniquely deduced from the Principal Components:

𝐱 =
𝑚

𝑗=1
𝑎𝑗𝐪𝑗

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGOrthonormal Transformation to Principal Components (1/3)



By ignoring principal components with smaller variances σ2𝑗 = 𝜆𝑗,  𝑗 = 𝑙 + 1, 𝑙 + 2,…,𝑚 we can
approximate (encode) vector 𝐱 with 𝐱 of reduced dimensionality 𝑙 < 𝑚

𝐱 = 𝑥1 𝑥2… 𝑥𝑙 = [𝐪1 𝐪2…𝐪𝑙] 𝑎1 𝛼2… 𝛼𝑙 T   =
𝑙

𝑗=1
𝑎𝑗𝐪𝑗  for  𝑙 < 𝑚

The error 𝐞 = 𝐱−𝐱 =∑𝒎
𝒊=𝒍+𝟏 𝑎 𝑖𝐪 𝑖 is orthogonal to 𝐱 :

𝐞T𝐱 =
𝑚

𝑖=𝑙+1
𝑎𝑖𝐪𝑇𝑗

𝑙

𝑗=1
𝑎𝑗𝐪𝑗= 0

• The total variance of the 𝑚 independent random variables ε𝑋𝑗 is ∑𝑚
𝑗=1 σ2𝑗 =∑

𝑚
𝑗=1 λ 𝑗 • The total variance of the 𝑙 Principal Components 𝐴𝑗 is ∑ 𝑙

𝑗=1 σ2𝑗 =∑
𝑙
𝑗=1 λ 𝑗 

⇒ The total variance of the error 𝐞 = 𝐱−𝐱 is λ𝑙+1 + λ𝑙+2 +… + λ𝑚 (the principalcomponents with the smaller variances)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGOrthonormal Transformation to Principal Components (2/3)



Application of PCA for Image Compression & Pattern Recognition of Handwritten Numbers
STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGOrthonormal Transformation to Principal Components (3/3)

Training Sample:Scanned images of handwritten numbers {0,1,…,9}
𝑁 = 1700 elements/number
𝑚 = 32 × 32 = 1024 pixels/image (features)
Column 1: Encoding with𝑚 binary digits (black or white/pixel)Column 2: Sample averages for normalization
Evaluation of 𝑙 = 64 principal eigenvectors of the
𝑚 ×𝑚 = (1024) × (1024) correlation matrix afternormalization (subtraction of sample averages)
Reconstruction of Images with 𝑙 ≤ 64 Principal Components

𝑙 ≪ 𝑚  = 32 × 32 = 1024 Column 3: 𝑙 = 1Column 4: 𝑙 = 5Column 5: 𝑙 = 16Column 6: 𝑙 = 32 (acceptable identification of numbers)Column 7: 𝑙 = 64 (perfect reproducibility under significantcompression, 1024 → 64)



Hebbian-based Maximum EigenfilterLinear Neural Network:
𝑦 𝑛 = 𝑣 𝑛 =∑𝑚

𝑖=1𝑤 𝑖 𝑛 𝑥 𝑖 𝑛  at step 𝑛
Hebbian Learning:Weights increase at step 𝑛 → 𝑛 + 1 ≤ 𝑁 if 𝑦 𝑛 𝑥𝑖 𝑛 > 0

To enforce stabilization (avoid unlimited growth) in every step (based on the CompetitionPrinciple) we normalize by summing over all synapses associated with the neuron:

the approximation is valid for small values of η
𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + η𝑦 𝑛 𝑥𝑖 𝑛

∑𝑚
𝑘=1 𝑤𝑘 𝑛 + η𝑦 𝑛 𝑥𝑘 𝑛 2 1

2
≅ 𝑤𝑖 𝑛 + η𝑦 𝑛 [𝑥𝑖 𝑛 −𝑦 𝑛 𝑤𝑖(𝑛)]

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGHebbian Learning of 1st Principal Component (1/2)
Self-Organized Feature AnalysisRule of Hebb: If signals (states) in the borders of a neural synapsis 𝑖 are synchronously updated in step 𝑛,the synaptic weight 𝑤𝑖 𝑛 increase. Else it tends to zero (inspired from neuropsychology learning context)Competition Principle: The most active synapses tend to eliminate weak ones

Signal-flow Graph of Maximum Eigenfilter withNormalizationPositive feedback 𝑦 𝑛 𝑥𝑖 𝑛 is countered by 𝑦 𝑛 𝑤𝑖(𝑛)
𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + η𝑦 𝑛 𝑥′𝑖 𝑛 ,  𝑥′𝑖 𝑛
= 𝑥𝑖 𝑛 −𝑦 𝑛 𝑤𝑖(𝑛)

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + η𝑦 𝑛 𝑥𝑖 𝑛 ,  𝑖 = 1,2,…,𝑚,  η learning-rate hyperparameter



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGHebbian Learning of 1st Principal Component (2/2)
Convergence Issues of Self-Organized Algorithm

Definitions of Vectors
𝐱(𝑛) = [𝑥1 𝑛  𝑥2 𝑛  … 𝑥𝑚 𝑛 ]T 
𝐰(𝑛) = [𝑤1 𝑛  𝑤2 𝑛  … 𝑤𝑚 𝑛 ]T

Unsupervised Learning via Self-Organization Algorithm:
𝑦 𝑛 =𝐰T 𝑛 𝐱(𝑛), 𝐰 𝑛 + 1 =𝐰 𝑛 + η𝑦 𝑛 [𝐱 𝑛 −𝑦 𝑛 𝐰 𝑛 ] ⇒

𝐰 𝑛 + 1 =𝐰 𝑛 + η[𝐱 𝑛 𝐱T(𝑛)𝐰 𝑛 −𝐰T 𝑛 (𝐱 𝑛 𝐱T(𝑛))𝐰 𝑛 𝐰 𝑛 ]

• Factors 𝐱 𝑛 𝐱T(𝑛) represent the Correlation Matrix 𝐑 = E[𝐗 𝐗T] at training iterationstep 𝑛 → 𝑛 + 1 ≤ 𝑁 without mean values. It leads to convergence properties of thealgorithm using non-linear stochastic difference equations (beyond the scope of thelectures)
• There is no external influence to the self-organized unsupervised learning algorithm,except the a-priori setting of the training hyperparameter η



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Generalized Hebbian-based Principal-Component Analysis (1/3)
Generalization of Hebbian-based Maximum Eigenfilter:
Linear Feedforward Single Layer Neural Network of 𝑙output neurons associated with the most importantPrincipal Components of input sample vectors ofdimensionality𝑚, 𝑙 < 𝑚
𝑦𝑗 𝑛 = 𝑣𝑗 𝑛 =

𝑚

𝑖=1
𝑤𝑗𝑖 𝑛 𝑥𝑖 𝑛 ,  𝑗 = 1,2,…,𝑙

Hebbian Learning: Weights 𝑤𝑗𝑖 𝑛 from input 𝑥𝑖 𝑛 , 𝑖 = 1,2,…,𝑚 to the Principal
Component 𝑦𝑗 𝑛 , 𝑗 = 1,2,…,𝑙 change by ∆𝑤𝑗𝑖 𝑛  in iteration 𝑛 → 𝑛 + 1

∆𝑤𝑗𝑖 𝑛 = η 𝑦𝑗 𝑛 𝑥𝑖 𝑛 −𝑦𝑗(𝑛)
𝑗

𝑘=1
𝑤𝑘𝑖 𝑛 𝑦𝑘 𝑛 , 𝑗 = 1,2,…,𝑙  &  𝑖 = 1,2,…,𝑚



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGeneralized Hebbian-based Principal-Component Analysis (2/3)
Generalized Hebbian Algorithm (GHA)

∆𝑤𝑗𝑖 𝑛 = η𝑦𝑗 𝑛 𝑥′𝑖 𝑛 −𝑤𝑗𝑖 𝑛 𝑦𝑗 𝑛 ,   𝑗 = 1,2,…,𝑙  και  𝑖 = 1,2,…,𝑚
𝑥′𝑖 𝑛 = 𝑥𝑖 𝑛 −

𝑗−1

𝑘=1
𝑤𝑘𝑖 𝑛 𝑦𝑘 𝑛

∆𝑤𝑗𝑖 𝑛 = η𝑦𝑗 𝑛 𝑥′′𝑖 𝑛 όπου 𝑥′′𝑖 𝑛 = 𝑥′𝑖 𝑛 −𝑤𝑗𝑖 𝑛 𝑦𝑗 𝑛

𝑤𝑗𝑖 𝑛 + 1 = 𝑤𝑗𝑖 𝑛 + ∆𝑤𝑗𝑖 𝑛 , 𝑤𝑗𝑖 𝑛 = ȥ−1[𝑤𝑗𝑖 𝑛 + 1 ]
Vector Form of GHA:
∆𝐰𝑗 𝑛 = η𝑦𝑗 𝑛 𝐱′𝑖 𝑛 −η𝑦2𝑗 𝑛 𝐰𝑗 𝑛 , 𝑗 = 1,2,…,𝑙
where 𝐱′ 𝑛 = 𝐱 𝑛 −∑ 𝑗−1

𝑘=1𝐰𝑘 𝑛 𝑦𝑘(𝑛)



For 𝒋 = 𝟏:  𝐱′ 𝑛 = 𝐱 𝑛Evaluation of 1st Principal Component 𝑦1 𝑛
For 𝒋 = 𝟐:  𝐱′ 𝑛 = 𝐱 𝑛 −𝐰1 𝑛 𝑦1 𝑛Evaluation of 2nd Principal Component 𝑦2 𝑛 as 1st component after subtracting 𝑦1 𝑛
For 𝒋 = 𝟑:  𝐱′ 𝑛 = 𝐱 𝑛 −𝐰1 𝑛 𝑦1 𝑛 −𝐰2 𝑛 𝑦2 𝑛Evaluation of 3rd Principal Component 𝑦3 𝑛 as 1st component after subtracting 𝑦1 𝑛and 𝑦2 𝑛…..

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Generalized Hebbian-based Principal-Component Analysis (3/3)
𝐱′(𝑛) = 𝐱 𝑛 −

𝑗−1

𝑘=1
𝐰𝑘 𝑛 𝑦𝑘 𝑛 ,  𝑗 = 1,2,…,𝑙

The 𝑙 most significant Principal Components correspond to theeigenvectors 𝐪𝑘 of the Correlation Matrix 𝐑 = E[𝐗𝐗T] , 𝑘 = 1,2,…,𝑙oredered by decreasing order of eigenvalues λ1 > λ2 > …> λ𝑙 andprovide the estimate 𝐱(𝑛) of input sample element 𝐱 𝑛 of𝑚 > 𝑙characteristics
𝐱(𝑛) =

𝑙

𝑘=1
𝑦𝑘(𝑛)𝐪𝑘  για  𝑙 < 𝑚



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGeneralized Hebbian Algorithm (GHA): Image Coding Example (1/2)• Training Sample: 2000 scanned pictures of Lena 256 × 256 pixels, 256 gray levels asin the 1st Original Image• Training Sample Elements: Images segmented to 1024 non-overlapping Blocks ofsize 8 × 8 pixels: 𝑚 = 64 features/block• Every block corresponds to sample input vector of 𝑚 features (pixels) encoded into
256 gray levels (8 bits/pixel):

𝐱(𝑛) = [𝑥1 𝑛  𝑥2 𝑛  … 𝑥𝑚 𝑛 ]T 𝑛 = 1,2,…,𝑁• The sample vectors are fed into a Linear Feedforward Network with 𝑙 = 8 outputs• The𝑚 × 𝑙 = 64 × 8 synaptic weights 𝑤𝑗𝑖 𝑛 converge to 8 Significant Principal
Components at its output nodes:

𝑦𝑗 𝑛 =
𝑚

𝑖=1
𝑤𝑗𝑖 𝑛 𝑥𝑖 𝑛 ,  𝑗 = 1,2,…,𝑙

• The Learning Rate) is set to η = 10−4• The weights after convergence are depicted in the 2nd Image with 4 × 2 = 8 regions(masks), 64 segments/mask, total 64 × 8 = 1024 segments representing thecontribution of 64 features of the sample input to the 8 outputs. White colorsignifies positive contribution, black negative and gray no contribution• The 3rd Image is a reconstruction of the Original using only 𝑙 = 8 most significantPrincipal Components
𝐱 𝑛 =

𝑙

𝑘=1
𝑦𝑘 𝑛 𝐪𝑘 ,       𝐪𝑘  = lim

𝑛
𝐰𝑘 𝑛 ,  𝐰𝑘 𝑛 = 𝑤𝑘1 𝑛  𝑤𝑘2 𝑛 … 𝑤𝑘𝑚(𝑛) T

• The 4th Image is a compressed version of the 3rd Image with quantized valuesaccording to the logarithm of the 8 output variances (final compression 11:1)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGeneralized Hebbian Algorithm (GHA): Image Coding Example (2/2)Original Image (Peppers): 𝟐𝟓𝟔 × 𝟐𝟓𝟔 pixels (features), 𝟐𝟓𝟔 gray levels
12 to 1 compression via quantization of weights into 8 SignificantPrincipal Components determined for Peppers

12 to 1 compression via quantization of weights into 8 SignificantPrincipal Components determined for Lena but applied for Peppers(GENERALIZATION ?)



SOM Model, Kohonen 1982

• Self-Organized Maps (SOM) refer to nonlinear Neural Networks with𝑚–dimensional inputs
𝐱 = 𝑥1 𝑥2… 𝑥𝑚 Τ (Sample Vectors, Examples)

• By analogy to mammal brain functions, Kohonen suggested in 1982 a Feedforward NeuralNetwork of a Single Layer of neurons 𝑗 = 1,2,…,𝑙  placed in a Feature Map Lattice
• Input nodes interact with postsynaptic lattice neurons with weights𝐰𝑗 = 𝑤𝑗1 𝑤𝑗2… 𝑤𝑗𝑚 Τ

• The activated states of postsynaptic neurons reflect the system estimate for 𝐱 =
𝑥1 𝑥2… 𝑥𝑚 Τ regarding the closest resemblance to patterns stored in SOM regions

• Regions are neighborhoods of active neurons, determined via Competitive UnsupervisedLearning around the closest neuron (winner) to input vector 𝐱

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGOverview of Self-Organizing Maps (SOM)

SOM Applications• Selection of dominant features in multi-dimensionalsample spaces• Image compression by identification of similarregions• Pattern recognition, classification of images• Reconstruction of images, filtering of interferenceand noise• Completion of partially damaged examples



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSOM Configuration (1/5)• Algorithm of feature map configuration is based on Hebb principles for topological self-organization of neural nets into postsynaptic neuron grids (arrays, lattices)• It saves via unsupervised learning patterns in the training data by selscting 𝑙 ≪ 𝑚 features(data compression, dimensionality reduction)• After configuration SOM attempts to reconstruct incomplete or distorted due to noise newexamples, based on statistical similarity to pre-stored patterns• Comparison with K -Means Clustering: With an adequate number of neurons SOM alsoidentifies K as the number of winning neurons, without the need for repeated trials!

Formation of NeuronLattice with Input of 3Features and Output ofDimensionality 4 × 4



SOM Model, Kohonen 1982

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSOM Configuration (2/5)
• An unsupervised learning algorithm identifies the closest neuron (winning neuron) forevery input training vector 𝐱 via a Competition Process that maximizes a discriminantfunction
• The winner determines a region of active neurons via a Cooperation Process withpostsynaptic neighbors in the two-dimensional array, resulting in topological feature mapof active neurons via self-organization
• In the Hebbian self-organization the weight vector𝐰𝑗 is updated with each training input

vector 𝐱. For stability of the iterative learning an Adaptive Process may guarantee thatweights do not increase in uncontrollable fashion



Μοντέλο SOM, Kohonen 1982

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSOM Configuration (3/5)
Competition Process

During training it identifies the closest postsynaptic neuron 𝑗 (winner) for every input 𝐱 viacompetition that maximizes a discriminant function of the inner product𝐰T
𝑗 𝐱

• ∀ 𝐱 = 𝑥1 𝑥2… 𝑥𝑚 Τ select𝐰𝑗 = 𝑤𝑗1 𝑤𝑗2… 𝑤𝑗𝑚 Τ for postsynaptic neurons 𝑗 = 1,2,…,𝑙
• Select winning neuron 𝑖(𝐱) as the one with the maximum𝐰T

𝑗 𝐱 (the activation center within
the array). Its selection is equivalent to identifying the minimum Euclidean distance betweenvectors 𝐱 and𝐰𝑗. If 𝐰𝑗 = 1:

𝑖 𝐱 = argmin
𝑗

𝐱−𝐰𝑗



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSOM Configuration (4/5)
Cooperation Process

• During training, the winning neuron 𝑖(𝐱) defines a region ℎ𝑗,𝑖(𝐱) of activated neighbors within
a lateral distance 𝑑𝑗,𝑖(𝑥)

• A usual choice: Gaussian Function ℎ𝑗,𝑖(𝐱) = exp −
𝑑2𝑗,𝑖 𝑥
2𝜎2

• The standard deviation 𝜎may decrease as training proceeds, attenuating spatialcorrelations of nodes in the array and accelerating convergence of synaptic weights



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSOM Configuration (5/5)
Adaptive Process

•The Hebbian based self-organized learning algorithm requires corrections while iteratingtowards a finite weight vector𝐰𝑗 for each example 𝐱. A remedy is to adjust its coordinates
via a forgetting term proportional to the output in each iteration
• Definition of Forgetting Term: 𝑔 𝑦𝑖 𝐰𝑗 with 𝑔 𝑦𝑖 a non-negative function of output 𝑦𝑖with 𝑔(𝑦𝑖) = 0 for 𝑦𝑖 = 0• Updates are guided by differences Δ𝐰𝑗 = η𝑦𝑖𝐱−𝑔 𝑦𝑖 𝐰𝑗 where:

η: learning hyperparameter,
𝑦𝑖𝐱: Hebbian term
𝑔 𝑦𝑖 𝐰𝑗: forgetting term

• With linear forgetting term 𝑔 𝑦𝑖 = η𝑦𝑖 and 𝑦𝑖 = ℎ𝑗,𝑖(𝐱) we obtain:
Δ𝐰𝑗 = ηℎ𝑗,𝑖 𝐱 (𝐱−𝐰𝑗) with 𝑖 𝐱 the winning neuron for input 𝐱

• In iteration 𝑛 → 𝑛 + 1 and with decreasing hyperparameter η(𝑛):
𝐰𝑗 𝑛 + 1 =𝐰𝑗 𝑛 + η(𝑛)ℎ𝑗,𝑖 𝐱 (𝑛)(𝐱(𝑛)−𝐰𝑗(𝑛))

The synaptic weights to the winning neuron converge to input sample vector 𝐱 andthose of the neighboring neurons reflect the distribution of the training sample



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGAutoencoders (1/2)Encoder:Input      𝐱 = 𝑥1 𝑥2… 𝑥𝑚 Τ

Output   𝐡= 𝐅𝐞(𝐱) = ℎ1 ℎ2… ℎ𝑙 Τ, 𝑙 ≪ 𝑚 (code, latent variables)
Decoder:Input 𝐡= ℎ1 ℎ2… ℎ𝑙 ΤOutput 𝐱′ = 𝐅𝐝 𝐡 = 𝑥1′ 𝑥2′… 𝑥𝑚′ Τ (reconstruction of 𝐱)
Bottleneck:Middle layer of hidden nodes reflecting 𝑙 latent variables
Unsupervised Learning Algorithm:
MSE minimization 𝐱−𝐱′ 2 via backpropagation for unlabeled training sample elements

• The latent variables reveal reducedfeature maps. With linear neural netsand zero bias they estimate the 𝑙Principal Components of unlabeledsample sets
• Applications include image compression,pattern recognition, correction andcompletion of distorted (noisy) images,anomaly detection from unlabeledtraining datasets

The decoder layers are not used after the encoderparameter tuning (training) stage for applicationsrelying on determination of latent variables, e.g. fordimensionality reduction and compression



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGAutoencoders (2/2)
Autoencoder Use for Anomaly Detection

• Used to identify outliers, rare invalid anomalies hidden among many normal unlabeledsample elements• The autoencoder parameters in all stages are tuned by back-propagation with normalexamples as input training elements• Close reconstruction of input elements at the output layer is considered as the test for atest (or new) element to be classified as normal or dismissed as a statistical outlier• Critical hyperparameters: Reconstruction deviation (e.g. MSE) and threshold classifying anelement as statistically normal or as an outlier

Note: All layers of the Autoencoder are employed in thepost-training phase of its operation as Anomaly Detector

https://saketsathe.net/downloads/autoencode.pdf

https://saketsathe.net/downloads/autoencode.pdf

