£.5e.u°

EMIZTHMH AEAOMENQON & MHXANIKH MABHEH

STOCHASTIC PROCESSES & OPTIMIZATION IN

MACHINE LEARNING
Overview of Neural Networks
Hebb’s Rule
Weight Tuning via Supervised Learning
Back-Propagation Algorithm

Prof. Vasilis Maglaris
maglaris@netmode.ntua.gr
www.netmode.ntua.gr
Room 002, New ECE Building
Tuesday February 18, 2025

NTUA - National Technical University of Athens, DSML - Data Science & Machine Learning Graduate Program

mailto:maglaris@netmode.ntua.gr
http://www.netmode.ntua.gr/

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Mnon-linear Model of Binary Artificial Neuron, Rosemblatt’s Perceptron

McCulloch & Pitts (1943): Neural Nets (NNs) in Machine Learning (ML)
Hebb (1949): Self-organizing learning principles

Rosemblatt (1958): Supervised Learning, Perceptron

Rumelhart (1985): Back Propagation Algorithm

Activation 1-
function Signum Function - sgn

o(-) f— P (p(U)E{—1,+-1} : j i

Summing
junction v

Synaptic

Neuron k: Binary E]gggification of Sample Elements x =[x X,..x,,] ', classes {-1, + 1}
Input Signals: Xj =% 1, 7 =1,2,..,m (Vector x of m Binary Features)

Synaptic Weights: W, = [wyy Wiq...W,,]

Bias: b, £ wy (Intercept term x5 =+ 1)

Induced Local Field - Activation Potential: v, =37 =0 WkiXj + by

inary Output: . = @ () = sen(p)e{=1Unactive), + 1(Active)}

Supervised Learning: Tuning of wy; based on N labeled training elements {x(n),d (n)} to
minimize deviations e.g. Mean Square Error (MSE): mm{ En 1 [d () =y (n)]%}

W

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Neural Networks as Directed Graphs

x] C ': Oy/\ = 'u’kj.\‘j
(a)
e(+)
X; O e O Vi = ¢(x))
(b)
~
v ¥
> Ye=Yi T Y
V.
7j
&’
(c)
’4 -\I]I
xj 7
X;
Xj
\~~
(d)

Signal-flow Graph Rules

Uk Z WkjXj

= 0
3 Wy = by Ik = (P(k)
U e(+) Output
tr O Jo

V)

Wk

Neuron Signal-flow Graph

Output
Yk

Neuron Architectural Graph

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Movtéha Nevpwvikwy AiktowvNeural Network Models

 §

Input layer Output layer
of source of neurons
nodes

Single-Layer Feedforward Network

EAETET opersion™
O

‘j\

)

Recurrent Network with no Hidden Neurons

Input layer Layer of Layer of
of source hidden output
nodes neurons neurons

Multilayer Feedforward Network with
Hidden Neurons

xj(n) O—» (‘K:j}yk(n)

=1
xj(n): Input Signal at instance n

Y (n): Output Signal at instance n
xj/(n): Internal laput Signal at instance n

ye(m) =) W, (n-1)
=0

Signal-flow Graph, Infinite Impulse
Response IIR Filter with Feedback

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Design Phases of Neural Network (NN)

¢ Supervised Learning using labeled training sample points selected from the environment:
» Evaluation (tuning) of parameters (synaptic weights Wi, biases b;) of NN model

 |terative training algorithms (e.g. minimizing Mean Square Error - MSE)

¢ Validation of NN model ability via additional known validation sample points:
» Selection of hyperparameters (number of neurons, layers, convergence criterion for
parameter tuning...)
* Avoidance of overfitting

¢ Testing of selected model accuracy in predicting new testing sample points:
* Checking the capability of selected NN model to generalize if fed with new data points
of the same environment, statistically similar but not used for training (and validation)
» Last design phase prior to production deployment

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Knowledge Representation

The discrimination capacity (prediction, perception, desired response) of the NN model to
external environment inputs depends on using:

+* Prior Information of the environment attributes

+»» Observations obtained by extensive (and selective) monitoring the environment
* Usually tempered by noisy sensor errors
* They provide training sample elements for NN parameter tuning, usually after
filtering and pre-normalization. They may be:
» Labeled, with appended output desired characteristics (additional features)
known to a supervisor that guides NN parameter tuning convergence
» Unlabeled, without indication of outut characteristics but providing the NN with
a sample for the environment statistics for unsupervised parameter tuning

Rule of Hebb, 1949: Inspired by Neuro-Physiological Learning
In artificial neural networks of binary state neurons, synapses between active neurons
exhibit tendencies of enforcement similarly to neuro-physiological learning systems

Synaptic weights wi; between active neurons i,j tend to increase, while others tend to

zero. This rule guides self-tuning of complex Machine Learning (ML) systems, e.g.
Unsupervised Learning in Self-Organizing Maps, Boltzmann Machines e.t.c.

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Building Prior Information into Neural Network Design

Architectural Choices guided by Prior Information - Convolutional NN’s

Convolutional Network Simplification Example
* Feedforward Fully Connected NN with Input Layer of 10
source nodes (features), Hidden Layer of 4 nodes and
Output Layer of 2 nodes
* The hidden neurons are fed only from 6 input nodes,
subsets of the 10 inputs, that comprise their receptive

fields. Their Activation Potential (or Induced Local Field) V] is

the weighted sum of 6 out of 10 inputs

* Weightsw,, i =1,...,6 between inputs x;,7 =1,...,10 and
hidden nodes 1,2,3,4 are commonly shared (weight
sharing). Their Activation Potential is assumed to be the
Convolutional Sums:

6
U]' :2 wixi+]-_1,] = 1,2,3,4
i=1

X10

Input layer Layer of Layer of thus
of source hidden output U1 = W1Xq + WHXo + W3X3 + WyXy + Wr X5 + WeXg
nodes neurons neurons

Uz = wle + ZUZX3 + ZU3X4 + ZU4.X5 + w5x6 + w6X7
7)3 = wl.X'4 + ZUZX5 + ZU3X6 + ZU4.X7 + w5x8 + w6X9
04 = W1Xg + wWHXg + W3 X7 + WypXg + WrXg + WeX10

Learning for w; from a reduced number of input features i, equally fed to all hidden nodes, is significantly
lighter than evaluating all synaptic weights for fully connected NN’s. It is justified when prior information
points to uniform selection of input features, e.g. computer vision models for restricted retina reception

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

. . Review of NN Design Principles
Architectural Choice

» Layers: Input, output, hidden
» Feedforward or recurrent model with feedback
Training for Parameter Tuning

> Supervised Learning

» Use of Labeled Training Sample Points (input - output pairs) to achieve minimization
of prediction error

» Unlabeled Training Sample Points
* Unsupervised Learning and Reinforcement Learning

» Normalization of Training Datasets
* Min-max Normalization of training sample features, prior to learning

> Iteration Schemas of Training Algorithm
* On-line Training proceeding step-by-step upon each training sample point application
in a random order (Stochastic Gradient Descent)
* Batch Training proceeding in each iteration after application of the entire training
sample (Batch Gradient Descent)

« Mini-Batch Training by applying in each iteration subsets (mini batches) of the
training sample

Epochs are periods of repeated application of the entire training sample, usually
with randomized re-selection of the order of appearance of its elements
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Learning System (Neural Net)
Estimation of (scalar) output y(n) =
h(x(n)) of the n' Environment
State Vector input e.g. binary
classification based on learned
statistics of input state coordinates
(features)

Training Phase
Proceeds with a Labeled Training
Sample of N elements (examples)
that describe instances of the state
of the environment x (1), along with
d (n), the desired response or label
known to a Teacher
For each training sample element
the Learning System (Neural
Network) evaluates an Actual
Response (output) y (n) = h(x(n))
The system computes the Error
Signal e(n) =d (n)—y(n) i.e. the
deviation of its actual response
from the Desired Response
conveyed by the Teacher
(supervisor)
The parameters of /i(.) are tuned in
N iterations to minimize an Error

Supervised Learning

Vector describing
state of the
environment

Environment N Teacher

x (1)
Training Sample Elements:

x(n),dn)},n=12,.,N

Desired
response

/ Actual +
Learning | Tesponse
E >
system =

(y (1) = h(x(n))

~ 1
Error signal

e(n) =d(n)-y(n)

The algorithm usually proceeds with randomly selected order
of the N training sample element inputs, towards the gradient
of the error function (e.g. Stochastic Gradient Descent)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Unsupervised Learning

Vector describing
state of the
environment

Unsupervised learning does no rely on labeled
data but, compared to supervised learning
algorithms, requires significantly larger training
datasets and may exhibit reliability problems

Learning
system

Environment >

The Learning System is self-tuned without external supervision by discovering important
statistical properties exhibited by the training elements (state vectors) of the Environment

In its training phase it infers stochastic features and patterns of large unlabeled training
datasets that point to models, processing, storage and classification methods e.g. by clustering
sample elements

The learning system can generate sample elements, conforming to the environment statistics.
As a result, it can be used to classify and complement noisy and/or incomplete data items (e.g.
in image processing and pattern recognition)

Uncontrollable guessing of statistical properties in training data and a limited understanding of
important features of the environment, may lead to severe overfitting (excessive reliance to
insignificant outliers) and to wrong classification or hallucinations

An unsupervised learning example: A Neural Network consisting of input nodes and a dense
layer of hidden nodes competing on encoding salient features of input data as in Self-
Organized Maps (SOM)

Potential use of the Rule of Hebb: During (unsupervised) training select for activation only
neurons with the maximum activation potential v, (winner-takes-all)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Reinforcement Learning

lreirll)fgzzgem It follows the Dynamic Programming -
State (input) Agual Optimal Stochastic Control paradigm. The
D Environment ﬂ Critic learning system parameters may be tuned

g by dynamically exploiting and exploring

Heuristic candidate Environmental State
reinforcement | Trajectories, anticipated from prior

Achicus el knowledge or simulated during a training

™ e phase. Control Actions aim to maximize

V| system (minimize) a long-term expected reward

(cost), accumulated along Ttrajectories

The Learning System learns possible trajectories of the Environment State Vector x (1) from prior
information and/or unlabeled training data. Instead of a direct supervisor. It proceeds by taking
Control Actions considering additional Reinforcement Signals from an external Critic or Agent

The Learning System Actions affect the Environment State Transitions, thus govern its evolution. In
most cases transition probabilities - actions are assumed to abide by Markov Decision Process models
In every iteration, the Environment computes a scalar Primary Reinforcement Signal that is conveyed
to the Critic along with the current state vector

The Critic evaluates state - action policy pairs by considering mid or long-term cost/reward objectives
resulting from expected state evolution (trajectory) of candidate policies

A simplified Heuristic Reinforcement Signal is conveyed to the Learning System which triggers
appropriate Control Actions, fed-back to the Environment to guide its long-term evolution

The Chinese DeepSeek Chat box employs a variant of Reinforcement Learning, unlike the
OpenAl ChatGPT which is based on massive Supervised Learning Large Language Models (LLM)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Rosenblatt’s Perceptron

X,

v o) Output
>

Class €,

Fixed x5= +1

input
= Wy = b
[X7
| >\‘\

[nputs <
: A .
| ~m Linear
' combiner
Overview:

Hard 4

N

Non-linearly separable classes

ccision
.~ Boundary
Class 6, g

limiter 0

m m
0 :Z w]x] :2 ZU]X]
=0 =1

Xy

(a)
Linearly separable classes

Decision boundary
wix; + wyx; +b=0

Rosenblatt introduced the Single-Layer Perceptron as a neuron of linear Induced Local Field v and
non-linear Activation Function ¢(v) (Threshold Function, Hard Limiter or Signum Function) for
binary classification of sample elements x =[x x4 ...xm]T into two linearly separable classes:

Fl1ify=9p@) =1, & ify=¢p@) =0orif y=¢p(@) =-1

Synaptic weights w = [w, wy...w,,] " are tuned on-line (stochastic iterative method) via an error-
correction algorithm on labeled training sample elements {x (1), d(n)}, n = 1,2,...,N via supervised
learning to minimize an error function (e.g. MSE) of deviations [d (n) —y (n)]

w(n+1) =w(n) +n[dm) -y)] x(n)
If the learning-rate hyperparameter 1, 0 <1 <1 is small it usually leads to (slow) convergence. If it is

large it may lead to fast convergence (e.g. for environments of significant element deviations) but
may skip optimality dua to oscillations)

Note: With Gaussian elements x(1) Bayes Classifiers into two classes &7, %, (based on minimization of error probability
with a-known a-priori probabilities py,p,) is identical to the Rosenblatt Perceptron

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Perceptron Classification of Boolean Operations: Functions AND, OR (XOR ?)

AND OR XOR Threshold Activation Function:
xl x2|y xl x2|y xl x2|y _ 1 _[0,v<0
S o |8 6 @8 8 0|6 y=h@=11",30
& 1 |6 5@ 1|1 4 1|1 {0, w1-Xq +w2-x2+b <0
1 6 |6 1 8 (1 1 & |1 Y= 1
X1+ WyXo +b >
1 1 |1 1 1 |1 1 1 |® e B 0
Ky Ky
i g
1 @ @ 1 @
00 o, e B S
0 1 1] _1
a) x) ANDxy b) x1 OR xy c) x) XOR. xy
Linearly Separable Boolean Non-Linear Se!)arable
Functions AND, OR Bpolean Function XOR
% X (Single Layer Perceptron
s T not capable to classify v)
lx__‘_ 1.,
e
KA~ —lﬁj 11_1:___,_5'_”.,-"
-1 0

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Perceptron Classification of Boolean Operations:
Function XOR via Feedforward Multi-Layer Perceptron (MLP)_

AND OR XOR
x1 x2|y xl x2|y xl x2|y
& 6 |8 & & |6 & & |6
8 1 |8 & 1|1 g 1|1
1 & |8 1 8 |1 1 8 |1
y S (O s | 1 1 |1 1 1 |8

Threshold Activation Function:

0,v<0
y—h(v)—[1’v>0
0, wyx;+wyx,+b<0
Y¥=11

w1-Xq + Woy+Xo +b>0

'-..'_4
1O, !
0 O0—=o6— 0
0 1 '
a) x{ ANDx) b) x{ OR xy c) x; XOR xy

Linearly Separable Boolean

Non-Linearly Separable
Functions AND, OR

Boolean Function XOR

gy o e (Single Layer Perceptron
X —17?(ﬂ 3 x,—1—4) not capable to classify y)
o o
- -
+1- +1-

XOR: Implementation via Hidden Neurons /¢, h, — Multi-Layer Perceptron, MLP

= Output of Neuron hy: a1 = h(wq1-x1 + Wy1:Xy + bq)
/}J—}% Output of Neuron fiy: a5y = h(wqy-x1 + WoyXp + by)

] i, Output of Neuron y: v = h(wq3-a1 + wy3-a, + b3)
lfl';;;{ em Wy = Wiy =Wy =Wy =1,b1 =0, by =-1
'x_T_' e, x1:0011 w13:1,w23:—2, b3=O

1 I bt Xo: 0101
kTR - 10110
L-"" H“q) al . Daniel Jurafsky, James H. Martin, “Speech and Language
1{1 ;'-_1. dy: 0010 Processing: An Introduction to Natural Language
o . Processing, Computational Linguistics, and Speech
y- 0 11 0 Recognition”, Third Edition draft, 2025

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Multilayer Perceptron, Back-Propagation Algorithm (1/3)

Algorithm Summary:

1.
2.

3.

[nput |

signal

Assumption: Differentiable non-linear activation function (pj(v]-) of neuron j (e.g. Logistic Function)
Dense layers of hidden neurons with weights wj; (from i — j). Hidden neuron state values reflect
features of the input training sample, tuned via supervised learning

Weights wj; are tuned via the Back-Propagation Algorithm, usually on-line (stochastic iterative

method) in randomized order for each labeled learning input instance {x (n) ,d]- (n)}, n=12,..,Nin

two phases per iteration n:

i. Forward Phase: Input x (71) traverses the network via Forward Function Signals with weights wji(n)
as determined up to this point, and evaluates the temporary state value yj(n) of the Output
neuron j

ii. Backward Phase: Deviations e; (1) = d;(n) —y;(n) traverse the network as Error Signals and correct
synaptic weights

signal

— Function signals

-« - -~ Error signals

Input First Second Output
layer hidden hidden layer
layer layer

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Multilayer Perceptron, Back-Propagation Algorithm (2/3)
Least Mean Square - LMS per Epoch Convergence:

For the training sample-element (example, instance) {x (1) ,d;(n)} the error wy;(n)
signal at thejth output node is ¢; (n) = d; (n) —y;(n). The Mean Square Error 5,(n)

81(n) ¢i(vy(n))
e (n)

wyi(n) 8;(n) @i(vi(n))
- O - O ey (n)

(MSE) of all temporary deV|at|ons is c/‘?(n) = Z ez(n) and the average for all

N training sample-elements in and Epoch is %’AVG (N):

1 EN' 1 }N‘ 1 Z ' €, ()
<épflVG (N) = g(n) = - 8.2(]’1) ‘Pml,_(unz,‘(”)))
N4 N& | 24640) -
/ . _]
lterative corrections Aw; Z(n) of welghts w Z(n) Iead éf(n) to reduction] (v] (n)) = 7007
towards the local gradient 6, (n) = %, with v, (n) =", w; (1) y;(n) the Backward Signal Flow

j
Induced Local Field of neuron j:

Aw;; (n) = no; (n) y;(n) , withn a Learning Hyperparameter | Neuron &

Yo=+1

u'ﬂ,(n) = I>}(n)

wy(n) = bj(n) dy(n)

dl(u)

wji(n) viin) o) yn) 4, wyn) vi(n) () u(n) -1

O ej(n) i (')7 7 O ei(n)

Output Neuron Forward Signal Flow Output Neuron k Signal Flow towards Hidden Neuron j

vi(n) ¢() yi{n) =1

.\IH(”)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Multilayer Perceptron, Back-Propagation Algorithm (3/3)
Steps of On-line Learning Algorithm

For each training sample-element {x (n) ,d]- (n)}, n =1,2,...N initialize parameters (weights) w](.f)(O)
for all layers [=0,1,2,...,.L
Proceed with forward phase calculations:

* For each neuronjand each layer =1,2,..., L the induced local field is:
o0 =) o

* Fori=0, y(l D=y 1, w(l) = b(l) (n) (bias |nto neuron j)

* The output value of neuron j at layer [is y](.l) (n) = (pj(v](.l) (n))

* For the first hidden layer [= 0: y](.o) (n) = xi(n)

* Ifj belongs to the output layer I =L: y](L) (n) = o]-(n), the final output j of the Multilayer
Perceptron. The error signal is ¢; (n) = dj (n) —0; (n)

Continue with backward phase calculations for = L,L—-1,...,0:

e(.L) (n) (p].’ (v(.L) (n)) if j belongs to the output layer L

50 (n) =
] (D (n)) 2, 6(l+1) (n) w(l+1) if j belongs to the hidden layer !

Weight updates at stepn + 1 proceed in proportion to the Learning Hyperparameter 1. To avoid
wild oscillations values of the previous iteration n—1 may also be considered weighted by a
momentum constant o. > 0:

w® (1 +1) = (n) + ax @ (1-1) + 1% 60 ())y ()

