
Prof. Vasilis Maglarismaglaris@netmode.ntua.grwww.netmode.ntua.grRoom 002, New ECE BuildingTuesday February 18, 2025

STOCHASTIC PROCESSES & OPTIMIZATION INMACHINE LEARNINGOverview of Neural NetworksHebb’s RuleWeight Tuning via Supervised LearningBack-Propagation Algorithm

NTUA - National Technical University of Athens, DSML - Data Science & Machine Learning Graduate Program

mailto:maglaris@netmode.ntua.gr
http://www.netmode.ntua.gr/


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGΜnon-linear Model of Binary Artificial Neuron, Rosemblatt’s Perceptron
McCulloch & Pitts (1943): Neural Nets (NNs) in Machine Learning (ML)Hebb (1949): Self-organizing learning principlesRosemblatt (1958): Supervised Learning, PerceptronRumelhart (1985): Back Propagation Algorithm

Neuron 𝑘: Binary Classification of Sample Elements 𝐱 = 𝑥1 𝑥2…𝑥𝑚
Τ, classes {−1,  + 1}Input Signals: 𝑥𝑗 ≜± 1, 𝑗 = 1,2,…,𝑚 (Vector 𝐱 of 𝑚 Binary Features)

Synaptic Weights: 𝐰𝑘 = 𝑤𝑘0 𝑤𝑘1…𝑤𝑘𝑚
Τ

Bias: 𝑏𝑘 ≜ 𝑤𝑘0 (Intercept term  𝑥0 ≜+ 1)Induced Local Field - Activation Potential: 𝑣𝑘 =∑𝑚
𝑗=0 𝑤𝑘𝑗𝑥 𝑗 + 𝑏𝑘Binary Output: 𝑦𝑘 = 𝜑 𝑣𝑘 = sgn(𝑣𝑘)∈{−1(𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒),  + 1(𝐴𝑐𝑡𝑖𝑣𝑒)}

Signum Function - sgn
𝜑 𝑣 ∈{−1, + 1}

Supervised Learning: Tuning of 𝑤𝑘𝑗 based on 𝑁 labeled training elements 𝐱 𝑛 ,𝑑 𝑛 to
minimize deviations e.g. Mean Square Error (MSE): min

𝐰𝑘
{ 1
𝑁
∑𝑁

𝑛=1 [𝑑 𝑛 −𝑦𝑘 𝑛 ]2}



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGNeural Networks as Directed Graphs

Signal-flow Graph Rules Neuron Architectural Graph

Neuron Signal-flow Graph

𝑦𝑘 = 𝜑(𝑣𝑘)

𝑣𝑘 =
𝑚

𝑗=0
𝑤𝑘𝑗𝑥𝑗



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGΜοντέλα Νευρωνικών ΔικτύωνNeural Network Models

Recurrent Network with no Hidden Neurons

Single-Layer Feedforward Network Multilayer Feedforward Network withHidden Neurons

 𝑥𝑗(𝑛): Input Signal at instance 𝑛
 𝑦𝑘(𝑛): Output Signal at instance 𝑛 𝑥𝑗′(𝑛): Internal Input Signal at instance 𝑛

𝑦𝑘 𝑛 =
∞

𝑙=0
𝑤𝑙+1𝑥𝑗(𝑛−𝑙) 

Signal-flow Graph, Infinite ImpulseResponse IIR Filter with Feedback



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGDesign Phases of Neural Network (NN)

v Supervised Learning using labeled training sample points selected from the environment:• Evaluation (tuning) of parameters (synaptic weights 𝑤𝑘𝑗, biases 𝑏𝑘) of NN model
• Iterative training algorithms (e.g. minimizing Mean Square Error - MSE)

v Validation of NN model ability via additional known validation sample points:• Selection of hyperparameters (number of neurons, layers, convergence criterion forparameter tuning…)• Avoidance of overfitting
v Testing of selected model accuracy in predicting new testing sample points:• Checking the capability of selected NN model to generalize if fed with new data pointsof the same environment, statistically similar but not used for training (and validation)• Last design phase prior to production deployment



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGKnowledge Representation
The discrimination capacity (prediction, perception, desired response) of the NN model toexternal environment inputs depends on using:
v Prior Information of the environment attributes
v Observations obtained by extensive (and selective) monitoring the environment• Usually tempered by noisy sensor errors• They provide training sample elements for NN parameter tuning, usually afterfiltering and pre-normalization. They may be:

Ø Labeled, with appended output desired characteristics (additional features)known to a supervisor that guides NN parameter tuning convergence
Ø Unlabeled, without indication of outut characteristics but providing the NN witha sample for the environment statistics for unsupervised parameter tuning

Rule of Hebb, 1949: Inspired by Neuro-Physiological LearningIn artificial neural networks of binary state neurons, synapses between active neuronsexhibit tendencies of enforcement similarly to neuro-physiological learning systems
Synaptic weights 𝑤𝑖𝑗 between active neurons 𝑖,𝑗 tend to increase, while others tend to
zero. This rule guides self-tuning of complex Machine Learning (ML) systems, e.g.Unsupervised Learning in Self-Organizing Maps, Boltzmann Machines e.t.c.



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGBuilding Prior Information into Neural Network Design
Convolutional Network Simplification Example• Feedforward Fully Connected NN with Input Layer of 10source nodes (features), Hidden Layer of 4 nodes andOutput Layer of 2 nodes• The hidden neurons are fed only from 6 input nodes,subsets of the 10 inputs, that comprise their receptivefields. Their Activation Potential (or Induced Local Field) 𝑣𝑗 isthe weighted sum of 6 out of 10 inputs• Weights 𝑤𝑖, 𝑖 = 1,…,6 between inputs 𝑥𝑖, 𝑖 = 1,…,10 andhidden nodes 1,2,3,4 are commonly shared (weightsharing). Their Activation Potential is assumed to be theConvolutional Sums:

𝑣𝑗 =
6

𝑖=1
𝑤𝑖𝑥𝑖+𝑗−1,  𝑗 = 1,2,3,4

thus
𝑣1 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑤4𝑥4 + 𝑤5𝑥5 + 𝑤6𝑥6
𝑣2 = 𝑤1𝑥2 + 𝑤2𝑥3 + 𝑤3𝑥4 + 𝑤4𝑥5 + 𝑤5𝑥6 + 𝑤6𝑥7
𝑣3 = 𝑤1𝑥4 + 𝑤2𝑥5 + 𝑤3𝑥6 + 𝑤4𝑥7 + 𝑤5𝑥8 + 𝑤6𝑥9 𝑣4  = 𝑤1𝑥5 + 𝑤2𝑥6 + 𝑤3𝑥7 + 𝑤4𝑥8 + 𝑤5𝑥9 + 𝑤6𝑥10Learning for 𝑤𝑖 from a reduced number of input features 𝑖, equally fed to all hidden nodes, is significantlylighter than evaluating all synaptic weights for fully connected NN’s. It is justified when prior informationpoints to uniform selection of input features, e.g. computer vision models for restricted retina reception

Architectural Choices guided by Prior Information - Convolutional NN’s



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGReview of NN Design PrinciplesArchitectural Choice
Ø Layers: Input, output, hidden
Ø Feedforward or recurrent model with feedback
Training for Parameter Tuning
Ø Supervised Learning• Use of Labeled Training Sample Points (input – output pairs) to achieve minimizationof prediction error
Ø Unlabeled Training Sample Points• Unsupervised Learning and Reinforcement Learning
Ø Normalization of Training Datasets• Min-max Normalization of training sample features, prior to learning
Ø Iteration Schemas of Training Algorithm• On-line Training proceeding step-by-step upon each training sample point applicationin a random order (Stochastic Gradient Descent)• Batch Training proceeding in each iteration after application of the entire trainingsample (Batch Gradient Descent)• Mini-Batch Training by applying in each iteration subsets (mini batches) of thetraining sample

Epochs are periods of repeated application of the entire training sample, usuallywith randomized re-selection of the order of appearance of its elementshttps://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSupervised LearningLearning System (Neural Net )• Estimation of (scalar) output 𝑦(𝑛) =
ℎ 𝐱 𝑛  of the 𝑛𝑡ℎ EnvironmentState Vector input e.g. binaryclassification based on learnedstatistics of input state coordinates(features)Training Phase• Proceeds with a Labeled TrainingSample of 𝑁 elements (examples)that describe instances of the stateof the environment 𝐱 𝑛 , along with
𝑑 𝑛 , the desired response or labelknown to a Teacher• For each training sample elementthe Learning System (NeuralNetwork) evaluates an ActualResponse (output) 𝑦 𝑛 = ℎ(𝐱 𝑛 )• The system computes the ErrorSignal 𝑒 𝑛 = 𝑑 𝑛 −𝑦(𝑛) i.e. thedeviation of its actual responsefrom the Desired Responseconveyed by the Teacher(supervisor)• The parameters of ℎ(.) are tuned in
𝑁 iterations to minimize an Errorfunction of 𝑒 𝑛 , 𝑛 = 1,2,…,𝑁

The algorithm usually proceeds with randomly selected orderof the 𝑁 training sample element inputs, towards the gradientof the error function (e.g. Stochastic Gradient Descent)

𝑑(𝑛)

𝐱 𝑛
Training Sample Elements:
{𝐱 𝑛 ,𝑑(𝑛)}, 𝑛 = 1,2,…,𝑁

𝑦 𝑛 = ℎ(𝐱 𝑛 )

𝑒 𝑛 = 𝑑 𝑛 −𝑦(𝑛)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGUnsupervised Learning

• The Learning System is self-tuned without external supervision by discovering importantstatistical properties exhibited by the training elements (state vectors) of the Environment
• In its training phase it infers stochastic features and patterns of large unlabeled trainingdatasets that point to models, processing, storage and classification methods e.g. by clusteringsample elements
• The learning system can generate sample elements, conforming to the environment statistics.As a result, it can be used to classify and complement noisy and/or incomplete data items (e.g.in image processing and pattern recognition)
• Uncontrollable guessing of statistical properties in training data and a limited understanding ofimportant features of the environment, may lead to severe overfitting (excessive reliance toinsignificant outliers) and to wrong classification or hallucinations
• An unsupervised learning example: A Neural Network consisting of input nodes and a denselayer of hidden nodes competing on encoding salient features of input data as in Self-Organized Maps (SOM)
• Potential use of the Rule of Hebb: During (unsupervised) training select for activation onlyneurons with the maximum activation potential 𝑣𝑘 (winner-takes-all)

Unsupervised learning does no rely on labeleddata but, compared to supervised learningalgorithms, requires significantly larger trainingdatasets and may exhibit reliability problems



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGReinforcement Learning

• The Learning System learns possible trajectories of the Environment State Vector 𝐱 𝑛  from priorinformation and/or unlabeled training data. Instead of a direct supervisor. Ιt proceeds by takingControl Actions considering additional Reinforcement Signals from an external Critic or Agent• The Learning System Actions affect the Environment State Transitions, thus govern its evolution. Inmost cases transition probabilities - actions are assumed to abide by Markov Decision Process models• In every iteration, the Environment computes a scalar Primary Reinforcement Signal that is conveyedto the Critic along with the current state vector• The Critic evaluates state – action policy pairs by considering mid or long-term cost/reward objectivesresulting from expected state evolution (trajectory) of candidate policies• A simplified Heuristic Reinforcement Signal is conveyed to the Learning System which triggersappropriate Control Actions, fed-back to the Environment to guide its long-term evolution

It follows the Dynamic Programming -Optimal Stochastic Control paradigm. Thelearning system parameters may be tunedby dynamically exploiting and exploringcandidate Environmental StateTrajectories, anticipated from priorknowledge or simulated during a trainingphase. Control Actions aim to maximize(minimize) a long-term expected reward(cost), accumulated along Τtrajectories

The Chinese DeepSeek Chat box employs a variant of Reinforcement Learning, unlike theOpenAI ChatGPT which is based on massive Supervised Learning Large Language Models (LLM)



𝑣 =
𝑚

𝑗=0
𝑤𝑗𝑥𝑗 =

𝑚

𝑗=1
𝑤𝑗𝑥𝑗+ 𝑏

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGRosenblatt’s Perceptron

Overview:
Rosenblatt introduced the Single-Layer Perceptron as a neuron of linear Induced Local Field 𝑣 andnon-linear Activation Function 𝜑(𝑣) (Threshold Function, Hard Limiter or Signum Function) forbinary classification of sample elements 𝐱 = 𝑥0 𝑥1…𝑥𝑚

Τ into two linearly separable classes:
 𝒞1 if 𝑦 = 𝜑 𝑣 = 1,  𝒞2 if 𝑦 = 𝜑 𝑣 = 0 or if  𝑦 = 𝜑 𝑣 = −1

Synaptic weights 𝐰 = 𝑤0 𝑤1…𝑤𝑚
Τ are tuned on-line (stochastic iterative method) via an error-correction algorithm on labeled training sample elements {𝐱 𝑛 , 𝑑(𝑛)}, 𝑛 = 1,2,…,𝑁 via supervisedlearning to minimize an error function (e.g. MSE) of deviations [𝑑 𝑛 −𝑦 𝑛 ]

𝐰 𝑛 + 1 = 𝐰 𝑛 + η 𝑑 𝑛 −𝑦 𝑛 𝐱(𝑛)
If the learning-rate hyperparameter η, 0 < η ≤ 1 is small it usually leads to (slow) convergence. If it islarge it may lead to fast convergence (e.g. for environments of significant element deviations) butmay skip optimality dua to oscillations)

Linearly separable classes

Non-linearly separable classes

Note: With Gaussian elements 𝐱(𝑛) Bayes Classifiers into two classes 𝒞1, 𝒞2 (based on minimization of error probabilitywith a-known a-priori probabilities 𝑝1,𝑝2) is identical to the Rosenblatt Perceptron



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGPerceptron Classification of Boolean Operations: Functions AND, OR (XOR ?)
Threshold Activation Function:

𝑦 = ℎ 𝑣 = 0, 𝑣 ≤ 0
1, 𝑣 > 0

𝑦 =
0,     𝑤1∙𝑥1 + 𝑤2∙𝑥2 + 𝑏 ≤ 0
1,     𝑤1∙𝑥1 + 𝑤2∙𝑥2 + 𝑏 > 0

Non-Linear SeparableBoolean Function XORLinearly Separable BooleanFunctions AND, OR (Single Layer Perceptronnot capable to classify 𝑦)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGPerceptron Classification of Boolean Operations:Function XOR via Feedforward Multi-Layer Perceptron (MLP)

Threshold Activation Function:
𝑦 = ℎ 𝑣 = 0, 𝑣 ≤ 0

1, 𝑣 > 0
𝑦 =

0,     𝑤1∙𝑥1 + 𝑤2∙𝑥2 + 𝑏 ≤ 0
1,     𝑤1∙𝑥1 + 𝑤2∙𝑥2 + 𝑏 > 0

Linearly Separable BooleanFunctions AND, OR Non-Linearly SeparableBoolean Function XOR(Single Layer Perceptronnot capable to classify 𝒚)

XOR: Implementation via Hidden Neurons ℎ1, ℎ2 → Multi-Layer Perceptron, MLP
Output of Neuron ℎ1:  𝑎1 = ℎ(𝑤11∙𝑥1 + 𝑤21∙𝑥2 + 𝑏1)Output of Neuron ℎ2:  𝑎2 = ℎ(𝑤12∙𝑥1 + 𝑤22∙𝑥2 + 𝑏2)Output of Neuron 𝑦1:   𝑦 = ℎ(𝑤13∙𝑎1 + 𝑤23∙𝑎2 + 𝑏3)

𝑤11 = 𝑤12 = 𝑤21 = 𝑤22 = 1, 𝑏1 = 0,  𝑏2 = −1
𝑤13 = 1,𝑤23 = −2, 𝑏3 = 0𝑥1: 0 0 1 1 

𝑥2: 0 1 0 1 
𝑎1: 0 1 1 0 
𝑎2: 0 0 1 0   𝑦: 0 1 1 0 

Daniel Jurafsky, James H. Martin, “Speech and LanguageProcessing: An Introduction to Natural LanguageProcessing, Computational Linguistics, and SpeechRecognition”, Third Edition draft, 2025



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGMultilayer Perceptron, Back-Propagation Algorithm (1/3)
Algorithm Summary:1. Assumption: Differentiable non-linear activation function 𝜑𝑗(𝑣𝑗) of neuron 𝑗 (e.g. Logistic Function)

2. Dense layers of hidden neurons with weights 𝑤𝑗𝑖 (from 𝑖 → 𝑗). Hidden neuron state values reflect
features of the input training sample, tuned via supervised learning3. Weights 𝑤𝑗𝑖 are tuned via the Back-Propagation Algorithm, usually on-line (stochastic iterative
method) in randomized order for each labeled learning input instance 𝐱 𝑛 ,𝑑𝑗 𝑛 , 𝑛 = 1,2,…,𝑁 in
two phases per iteration 𝑛:i. Forward Phase: Input 𝐱 𝑛 traverses the network via Forward Function Signals with weights 𝑤𝑗𝑖(𝑛)

as determined up to this point, and evaluates the temporary state value 𝑦𝑗(𝑛) of the Output
neuron 𝑗ii. Backward Phase: Deviations 𝑒𝑗 𝑛 = 𝑑𝑗 𝑛 −𝑦𝑗(𝑛) traverse the network as Error Signals and correct
synaptic weights4. Final convergence is declared after several epochs that involve two-phase iterations for the entiretraining sample, involving the same input elements but in re-randomized order



Backward Signal Flow
𝜑′

𝑗 𝑣𝑗 𝑛 =   𝜕𝑦𝑗(𝑛)
𝜕𝑣𝑗(𝑛)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGMultilayer Perceptron, Back-Propagation Algorithm (2/3)

Output Neuron Forward Signal Flow Output Neuron 𝑘 Signal Flow towards Hidden Neuron 𝑗

Least Mean Square – LMS per Epoch Convergence:For the training sample-element (example, instance) {𝐱 𝑛 ,𝑑𝑗(𝑛)} the error
signal at the 𝑗𝑡ℎ output node is 𝑒𝑗 𝑛 = 𝑑𝑗 𝑛 −𝑦𝑗(𝑛). The Mean Square Error
(MSE) of all temporary deviations is 𝓔 𝑛 = 1

2
∑

𝑗
𝑒2𝑗 (𝑛) and the average for all

𝑁 training sample-elements in and Epoch is 𝓔𝐴𝑉𝐺 𝑁 :
𝓔𝐴𝑉𝐺 𝑁 = 1

𝑁

𝑁

𝑛=1
𝓔 𝑛 = 1

𝑁

𝑁

𝑛=1

1
2 𝑗

𝑒2𝑗 (𝑛)

Iterative corrections ∆𝑤𝑗𝑖(𝑛) of weights 𝑤𝑗𝑖(𝑛) lead 𝓔 𝑛 to reduction
towards the local gradient 𝛿𝑗 𝑛 = 𝜕𝓔 𝑛

𝜕𝑣𝑗(𝑛)
, with 𝑣𝑗 𝑛 =∑𝑚

𝑖=0 𝑤 𝑗𝑖 𝑛 𝑦 𝑖(𝑛) the
Induced Local Field of neuron 𝑗:

∆𝑤𝑗𝑖 𝑛 = η𝛿𝑗 𝑛 𝑦𝑖(𝑛) , with η a Learning Hyperparameter



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGMultilayer Perceptron, Back-Propagation Algorithm (3/3)Steps of On-line Learning Algorithm
1. For each training sample-element 𝐱 𝑛 ,𝑑𝑗 𝑛 , 𝑛 = 1,2,…,𝑁 initialize parameters (weights) 𝑤(𝑙)

𝑗𝑖 (0)
for all layers 𝑙 = 0,1,2,…,𝐿

2. Proceed with forward phase calculations:
• For each neuron 𝑗 and each layer 𝑙 = 1,2,…, 𝐿 the induced local field is:

𝑣(𝑙)
𝑗 𝑛 =

𝑖
𝑤(𝑙)

𝑗𝑖 (𝑛)𝑦(𝑙−1)
𝑗 𝑛

• For 𝑖 = 0,  𝑦(𝑙−1)
0 =+ 1,𝑤(𝑙)

𝑗0 = 𝑏(𝑙)
𝑗 𝑛 (bias into neuron 𝑗)

• The output value of neuron 𝑗 at layer 𝑙 is 𝑦(𝑙)
𝑗 𝑛 = 𝜑𝑗(𝑣 𝑙

𝑗 𝑛 )
• For the first hidden layer 𝑙 = 0: 𝑦(0)

𝑗 𝑛 = 𝑥𝑗(𝑛)
• If 𝑗 belongs to the output layer 𝑙 = 𝐿: 𝑦(𝐿)

𝑗 𝑛 = 𝑜𝑗(𝑛), the final output 𝑗 of the Multilayer
Perceptron. The error signal is 𝑒𝑗 𝑛 = 𝑑𝑗 𝑛 −𝑜𝑗 𝑛

3. Continue with backward phase calculations for 𝑙 = 𝐿,𝐿−1,…, 0 :
𝛿(𝑙)
𝑗 𝑛 =

𝑒(𝐿)
𝑗 𝑛  𝜑′

𝑗 𝑣(𝐿)
𝑗 𝑛                            if 𝑗 belongs to the output layer 𝐿

𝜑′
𝑗 𝑣(𝑙)

𝑗 𝑛 ∑
𝑘
𝛿 (𝑙+1)

𝐾 𝑛 𝑤 (𝑙+1)
𝑘𝑖       if 𝑗 belongs to the hidden layer 𝑙

Weight updates at step 𝑛 + 1 proceed in proportion to the Learning Hyperparameter η. To avoidwild oscillations values of the previous iteration 𝑛−1 may also be considered weighted by amomentum constant α ≥ 0:
𝑤 𝑙

𝑗𝑖 𝑛 + 1 = 𝑤 𝑙
𝑗𝑖 𝑛 + α × 𝑤 𝑙

𝑗𝑖 𝑛−1 + η × 𝛿(𝑙)
𝑗 𝑛 (𝑛)𝑦(𝑙−1)

𝑗 𝑛


