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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGCourse Outline (1/2)
1. Optimization Algorithms in Machine Learning: Definitions of Artificial Intelligence (AI) & MachineLearning (ML). Training, Validation & Testing Datasets. Supervised, Unsupervised & ReinforcementLearning. Discriminative & Generative Models, ChatGPT (Chat Generative Pre-trained Transformer) &DeepSeek https://arxiv.org/pdf/2501.12948. Linear & Logistic Regression
2. Neural Networks, Hebb’s Rule. Parameter tuning via Supervised Learning, Back-PropagationAlgorithm (Ch. 1 of [1], Ch. 1 of [7] & [9])
3. Unsupervised Learning: K-Means Clustering, Principal Components Analysis - PCA, Self-OrganizingMaps (SOM), Autoencoders (Ch. 5 & 8 of [1], Ch. 10 of [3])
4. Stochastic Models rooted in Statistical Mechanics: Markov Chains, State Transitions, Chapman –Kolmogorov equations, transient & recurrent states, periodicity, irreducibility, asymptotic behavior,ergodicity & stationarity (Ch. 11 of [1], & [4], [5])
5. Markov Chain Monte Carlo (MCMC) method, Metropolis – Hastings algorithm. Simulated Annealing,Gibbs sampling. Generative Models, Boltzmann Machine, Restricted Boltzmann Machine (RBM), DeepBelief Nets - DBN) (Ch. 11 of [1] & Ch. 4 of [3])
6. Reinforcement Learning & Dynamic Programming: Markov Decision Processes, Bellman’s OptimalityCriterion, Value & Policy Iteration optimization algorithms. Approximate methods in dynamicprogramming, TD & Q-Learning (Ch. 12 of [1])
7. Reinforcement Learning for Internet Routing: The Bellman-Ford algorithm, Border Gateway Protocols- BGP (NTUA ECE Course “Network Management – Intelligent Networks”https://www.netmode.ntua.gr/wp-content/uploads/2023/01/NetMan_IP_Routing_2022_10_31.pdf)

https://arxiv.org/pdf/2501.12948
https://arxiv.org/pdf/2501.12948
https://arxiv.org/pdf/2501.12948
http://www.netmode.ntua.gr/courses/undergraduate/netman/2021-2022/NetMan_2021_11_01.pdf
https://www.netmode.ntua.gr/wp-content/uploads/2023/01/NetMan_IP_Routing_2022_10_31.pdf


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGCourse Outline (2/2)
8. Kernel Algorithms & Pattern Separability: Cover’s Theorem, applications to Radial-Basis Function(RBF) Networks, Hybrid Learning, Support Vector Machines (SVM) (Ch. 5 & 6 of [1], Ch. 6 of [13])
9. Non-parametric classifiers, classification of sample elements in preset classes, K-Nearest Neighbors(KNN) algorithm (Ch. 2 of [10], Ch. 8 of [13])
10. Statistical evaluation of Binary Classification: Confusion Matrix, Receiver Operating Characteristics(ROC) & Area Under the Curve (AUC). Parametric probabilistic classification - Bayes & Naïve BayesClassifiers (Ch. 6 of [13], Ch. 5 of [7])
11. Decision Trees: CART - Classification And Regression Trees algorithms, Gini Index, Random Forests,Bagging - Bootstrap & aggregating (Ch. 8 of [10])
12. Recurrent Neural Nets - RNN: Associative Memory & Content Addressable Memory – CAM models,Hopfield Networks, RNNs & time/character series (Ch. 13 & 15 of [1], Ch. 2 &3 of [3])
13. Natural Language Processing (NLP), Large Language Models (LLM), Long-Short Term Memory (LSTM)networks, Transformers (Ch. 8, 9 & 10 of [8], Ch. 10 of [7])
14. eXplainable AI (XAI): Definitions, Intrinsic & Model-Agnostic XAI Methods, PI (Permutation FeatureImportance), SHAP (SHapley Additive exPlanations), LIME (Local Interpretable Model AgnosticExplanation) (Ch. 1, 2 & 4 of [15])



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGFounding Fathers of Artificial Intelligence

Andrey Kolmogorov (1903 -1987): Probability Theoryhttps://en.wikipedia.org/wiki/Andrey_Kolmogorov

Thomas Bayes (1701 -1761): Combinatorial Probabilities, Statistical Inferencehttps://en.wikipedia.org/wiki/Thomas_Bayes

John von Neumann (1903 -1957): Statistical Modelling, Game Theory, Entropyhttps://en.wikipedia.org/wiki/John_von_Neumann

Josiah Willard Gibbs (1839 -1903): Statistical Mechanics, Thermodynamicshttps://en.wikipedia.org/wiki/Josiah_Willard_Gibbs
Ludwig Boltzmann (1844 -1906): Statistical Mechanics, Thermodynamicshttps://en.wikipedia.org/wiki/Ludwig_Boltzmann

Johann Carl Friedrich Gauss (1777 -1855): Statistical Inference, Distributions of Sample Datahttps://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

Richard Bellman (1920 - 1984): Dynamic Programminghttps://en.wikipedia.org/wiki/Richard_E._Bellman

Alan Turing (1912 -1954): Computing Machinery, Codes, Artificial Intelligence, Logichttps://en.wikipedia.org/wiki/Alan_Turing

Andrey Markov (1856 -1922): Probability Theory, Stochastic Processeshttps://en.wikipedia.org/wiki/Andrey_Markov
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Geoffrey Hinton (1947): Physics, Boltzmann Machines, Deep Belief Networks (Nobel Prize in Physics, 2024)https://en.wikipedia.org/wiki/Geoffrey_Hinton

David Rumelhart (1942 - 2011): Psychology & Artificial Intelligence (AI), Back Propagation Algorithmhttps://en.wikipedia.org/wiki/David_Rumelhart

Frank Rosenblatt (1928 - 1972): Psychology & Artificial Intelligence (AI), Neural Networks - Perceptronhttps://en.wikipedia.org/wiki/Frank_Rosenblatt

Demis Hassabis (1976): AI Research, Protein Structure Prediction (Nobel Prize in Chemistry, 2024)https://en.wikipedia.org/wiki/Demis_Hassabis

Nicholas Metropolis - Μητρόπουλος (1915 - 1999): Monte Carlo Simulations, Simulated Annealinghttps://en.wikipedia.org/wiki/Nicholas_Metropolis

Vladimir Vapnik (1936): Statistical Learning, Support Vector Machines (SVM)https://en.wikipedia.org/wiki/Vladimir_Vapnik

Donald Hebb (1904 - 1985): Neurophysiology, Learning Ruleshttps://en.wikipedia.org/wiki/Donald_O._Hebb

John Hopfield (1933): Physics, Biology, Recurrent Neural Networks (RNN) (Nobel Prize in Physics, 2024)https://en.wikipedia.org/wiki/John_Hopfield

Teuvo Kohonen (1934 - 2021): Self-Organizing Maps (SOM)https://en.wikipedia.org/wiki/Teuvo_Kohonen
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STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGMachine Learning & Artificial Intelligence

A Definition of Artificial Intelligence - AI:Artificial intelligence leverages computers and machines to mimic the problem-solvingand decision-making capabilities of the human mind(IBM: https://www.ibm.com/topics/artificial-intelligence)

A Definition of Machine Learning - ML:Machine learning is a branch of artificial intelligence (AI) and computer science whichfocuses on the use of data and algorithms to imitate the way that humans learn, graduallyimproving its accuracy(IBM: https://www.ibm.com/topics/machine-learning)

https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/machine-learning


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGDiscriminative Machine Learning Models

Definition:
Classification or Regression (estimation) of data elements via conditional probabilityestimates of plausible outputs (label) given input sample elements, based on what themodel learns by iteratively feeding sample elements of a training dataset and checkinggeneralization by applying elements of a testing dataset

Applications:
• Classification of sample elements based on their characteristics (features)
• Pattern recognition based on principal sample element features
• Medical imaging, diagnostics semi-automation tools
• Prediction (regression) of output based on pre-stored pairs of input-output elements



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGenerative AI Models
Definition:

Generation of sample elements conforming to joint input-output statistics estimated byiterative input of training sample elements from which the system infers jointprobabilities of the output with input features (virtual reality output, risk ofhallucinations)
Applications:

• Bayes classifiers, a very popular and simple generative classification method
• Current hype, with massive training datasets and lengthy training times (months!),expensive environmentally hazardous datacenters requirements, cloud-hostedmultiprocessor GPUs (Graphics Processing Units) and highly specialized staffing
• Generation of text elements and chatboxes based on Large Language Models - LLM,text translation, voice recognition, production of simulated (virtual reality) images,idealized background screens, animated cartoons…
• Extensive training of Search-Engines (Google,MS Bing…), OpenAI -MS ChatGPT (ChatGenerative Pre-trained Transformer), DeepSeek chatbox…
• Offered As-a-Service (AaS) to customers, stirring fierce competition for supremacyamongst the US, China, Europe (?)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGIntroduction to Machine Learning Concepts (1/6)
Causes-and-Effects of the Artificial Intelligence Revolution:
• The cataclysmic developments of distributed (cloud) computing and storageinfrastructures enables extremely complex algorithms of statistical inference andstochastic optimization, based on large historical datasets
• Processing of multi-dimensional huge data (big data) with a massive number ofcharacteristics (features) triggers novel data mining algorithms to estimate, predict,classify and generate new sample elements, statistically close to pre-stored historical data
• The ever-deepening understanding of learning methods in biological systems, leads toemulation of Human Intelligence via Artificial Intelligence algorithms that characterize orgenerate new instances, always with some error probability (expected in statisticalinference decisions) and hopefully minute danger to lead to hazardous hallucinations
• The advances in Natural Language Processing (NLP) and Text Processing fields, coupledwith technology breakthroughs and the ubiquitous Internet availability, lead to generativemassive models often referred to as Large Language Models (LLMs), with human-friendlyattributes and tremendous commercial potential and geopolitical might
•



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGIntroduction to Machine Learning Concepts (2/6)Risks of the Artificial Intelligence Revolution:
• Artificial Intelligence exhibits risks associated with all (r)evolutions (e.g. widening of globalinequalities, re-alignment of work-force, new employment rules) and new challenges (e.g.how to protect Individual Privacy Rights – IPR & enforce Intellectual Property)
• Use of (Generative) AI to spread fake news, promote plagiarism, infringe IntellectualProperty (e.g. unauthorized use of Wikipedia texts by OpenAI for ChatGPT training)
• Humanity will cast regulations (e.g. 2016/6/91 EU General Data Protection Regulation -GDPR) to harness use of big data and smart algorithms (perhaps a wishful thinking…)

NY Times, May 2023 on G. Hinton: “The Godfather of A.I.” Leaves Google and Warns ofDanger Ahead: Generative A.I. can already be a tool for misinformation. Soon, it could be a riskto jobs. Somewhere down the line, tech’s biggest worriers say, it could be a risk to humanityhttps://www.nytimes.com/2023/05/01/technology/ai-google-chatbot-engineer-quits-hinton.html

Geoffrey Hinton: British – Canadian, Born in London UK 1947• 1977: Ph.D., University of Edinburgh, Scotland, UK• Academic Career UK, USA, Canada• Pioneer in Neural Networks research (Boltzmann Machines, Deep BeliefNetworks, Generative AI…)• 2013-2023: Scientific Advisor of Google & Professor, University of Toronto• May 2023: Resigned from Google to freely speak of uncontrollable AI risks• Sept. 2024: Nobel Prize in Physics

https://www.nytimes.com/2023/05/01/technology/ai-google-chatbot-engineer-quits-hinton.html


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGIntroduction to Machine Learning Concepts (3/6)
Dataset Definitionshttps://en.wikipedia.org/wiki/Training,_validation,_and_test_sets

• Training Set: Sample (set) of examples (sample points or elements) used for tuning theparameters of a specific configuration model during the training phase of ML
• Validation Set: Sample (set) of examples, not used for training, with features similar to thetraining sample elements, used to validate convergence of the training phase. It unusuallyleads to the selection of configuration hyperparameters of a decision model by comparingvarious options e.g. in terms of accuracy and ability to generalize that might suffer fromexcessive reliance to training examples (overfitting). The validation dataset could not bedefined or (in most cases) it could be a selection of elements, e.g. a 10 - 20% of examplesfiltered from the training dataset
• Test Set: Sample (set) of examples, not explicitly used for training and validation, insertedas input to a finally selected and tuned ML system. It assesses the accuracy and thegeneralization potential of a model fed with unseen data points, prior to its actualproduction deployment
• In case that no validation dataset is defined, performance of a model is deduced directlyvia the test dataset

https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGIntroduction to Machine Learning Concepts (4/6)
Illustration of Overfittinghttps://en.wikipedia.org/wiki/Training,_validation,_and_test_sets

https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGIntroduction to Machine Learning Concepts (5/6)
Parameters & Hyperparametershttps://en.wikipedia.org/wiki/Hyperparameter_optimization

• The parameters tuned during training refer to a specific model structure (e.g.determination of a neural network synaptic wrights. They are determined by iterations ona specific input-output configuration that aim to converge in an estimated accurate MLmodel, subsequently fed by training sample points
• Parameters concerning the model structure (e.g. number of neurons, layers of hiddenneurons) and to convergence criteria are referred to as hyperparameters
• The hyperparameters are selected based on the designer experience and/or withrepetitions of parameter tuning (training) and validation to improve model accuracy priorto the testing of the ML model
• Search methods for hyperparameters selection include Exhaustive search, Grid search,random search… depending on the acceptable number of trials of tuned models
• The selection of hyperparameters if there is no validation dataset can be performed withrepeated trials over the test dataset

https://en.wikipedia.org/wiki/Hyperparameter_optimization


STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGIntroduction to Machine Learning Concepts (6/6)General Machine Learning Categories
Ø Supervised Learning• Training sample elements (examples) include an output label, appended to inputfeatures (labeled training sample points). The system parameters are tuned tominimize output – label deviations by iteratively applying training examples
Ø Unsupervised Learning• The system infers input sample statistics from the training sample elements, withno guidance from a priori known output values (labels). The system tunes itsparameters to fit important (by assumption) statistical properties of the trainingdataset by discovering stochastic features, patterns present in a large number oftraining examples (unlabeled training datasets). This converges to predictions ofapplicable models and methods e.g. for assigning input elements into clusters
Ø Reinforcement Learning• This category is closely related to stochastic control systems that affect the stateevolution of an outside environment. The system (a controller) reacts toreinforcement signals from external critics related to the environment, whoenforce actions that may impact the evolution of the environment state towards along-term expected cost objective. Parameter tuning may persist beyond a trainingperiod, as the actions can dynamically affect the evolution of the environment

Supervised learning results into efficient, fast and reliable convergence for decisionmaking problems. But the requirement for not readily available labeled datasetsoften favors unsupervised methods



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGGeneric Model of Supervised Learning

{𝐱 𝑛 ,𝑑 𝑛 }

ℎ(∙) Output: 𝑦 = ℎ(𝐱)Input:
𝐱

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall2018
• The system goal is to assign input vectors (input samplepoints, examples, instances) 𝐱 = 𝑥1 𝑥2…𝑥𝑚 Τ to output values
𝑦 (targets, response values). The coordinates 𝑥𝑖 encode𝑚characteristics (features) of the input vector 𝐱

• The form and parameters of ℎ ∙ result from the learningalgorithm that converges to the system goal for the𝑁elements of the training sample
𝑑 𝑛 ≅ 𝑦 𝑛 = ℎ(𝐱 𝑛 )

• If 𝑦 is a finite integer we have a Classification problem(for 2 classes we have binary classification)
• If 𝑦 assumes continuous real values we have a Regressionproblem

We seek the input-output function 𝑦 = ℎ(𝐱) ≅ 𝑑 thatminimizes deviations (errors) between the label 𝑑 (known toan external supervisor) and the response 𝑦 for input vectors
in the Training Set of𝑁 pairs {𝐱 𝑛 ,𝑑 𝑛 }, 𝑛 = 1,2,…,𝑁



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGSupervised Learning Example – Linear Regression
Find the Linear Function ℎ(𝑥) that predicts the value 𝑦 = ℎ(𝑥) based on the propertyarea 𝑥 the Labeled Training Sample𝓓 = 𝑥 1 ,𝑑 1 ,…, 𝑥 𝑁 ,𝑑 𝑁 of propertysales registered in the area

AREA(square feet) VALUE(1000$)
2104 400
1600 330
2400 369
1416 232
3000 540
… …

Sample Elements for𝑁 = 47 Cases

Linear Regression: 𝑦 = ℎ 𝑥 = 0.1392 𝑥 + 89.6Predicted Value for a Property of 2500 square feet: $437,000

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall2018



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGLinear Regression Parameter Tuning (1/2)
Ø The coordinates of the input vector 𝐱 = 𝑥0 𝑥1…𝑥𝑚 Τcorrespond to encoding of its𝑚features: 𝑥1,𝑥2,…,𝑥𝑚 with 𝑥0 ≜ 1 (intercept term)
Ø The linear regression system computes parameters𝐰 = 𝑤0 𝑤1…𝑤𝑚 Τ  of the function 𝑦 =
ℎ𝒘 𝐱 = 𝑤0𝑥0 + 𝑤1𝑥1 +…+  𝑤𝑚𝑥𝑚 =𝐰𝐓𝐱 that yield to small deviations for the labeledTraining Set𝓓 = 𝐱 1 ,𝑑 1 ,…, 𝐱 𝑁 ,𝑑 𝑁• 𝐱(𝑛) : Input training vector 𝑛 = 1,2,…, 𝑁 (regressors)• 𝑑(𝑛): Known output value (label) of training vector 𝑛 (regressand)• 𝑦(𝑛) = ℎ𝒘 𝐱(𝑛) : Current system response for training vector 𝐱(𝑛)• 𝜀 𝑛 = 𝑑 𝑛 −𝑦(𝑛): Deviation (error) for training input {𝐱 𝑛 ,𝑑 𝑛 }, 𝑛 = 1,2,…,𝑁• For large𝑁, 𝐱 𝑛 , 𝑑 𝑛 , 𝜀(𝑛) can be viewed as sample values of random variables

Ø Convergence criterion: Least Mean Square - LMS yielding the parameters𝐰 of ℎ𝐰(𝐱) orequivalently determine𝐰 that minimizes theMean Square Error (MSE) 𝐽 𝐰
𝐽 𝐰 ≜ 1

2

𝑁

𝑛=1
𝜀(𝑛) 2= 1

2

𝑁

𝑛=1
𝑑(𝑛)−ℎ𝒘 𝐱(𝑛) 2

Ø With one input variable 𝑥0 = 1,𝑥1 = 𝑥 the Linear Regression is formulated as:
 𝐱 = 1 𝑥 T, 𝐰 = 𝑤0 𝑤1 Τ, y = ℎ𝐰 𝐱 = 𝐰𝐓𝐱 = 𝑤0 + 𝑤1𝑥

𝐽 𝒘 =   1
2

𝑁

𝑛=1
𝑑(𝑛)−(𝑤0 + 𝑤1𝑥(𝑖)) 2



𝐰(0)

𝐰(3)
𝐰(2)

𝐰(1)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGLinear Regression Parameter Tuning (2/2)

LMS Convergence Options (Widrow-Hoff)• Batch Gradient Descent: Search for𝐰 = 𝑤0 𝑤1…𝑤𝑚 Τ that minimizes 𝐽 𝐰 byconsidering in every iteration the whole training set𝓓 = 𝐱 1 ,𝑑 1 ,…, 𝐱 𝑁 ,𝑑 𝑁
𝑤𝑗≔𝑤𝑗−𝛼

𝜕𝐽 𝐰
𝜕𝑤𝑗

= 𝑤𝑗 + 𝛼∑𝑁
𝑛=1 𝑑 𝑛 −ℎ𝐰 𝐱 𝑛 𝑥𝑗(𝑛),     𝑗 = 0,1,2,…,𝑚 ∀𝑖

• Stochastic (Incremental) Gradient Descent, Stochastic Approximations: Search for𝐰 byconsidering a random (stochastic) sequence of single input training elements
𝐱 𝑛 ,𝑑 𝑛 , 𝑛 = 1,2,….,𝑁 until convergence

𝑤𝑗≔𝑤𝑗 + 𝛼 𝑑 𝑛 −ℎ𝐰 𝐱 𝑛 𝑥𝑗(𝑛),  𝑗 = 0,1,2,…,𝑚      𝑛 = 1,2,…,𝑁
Ø The stochastic method usually yields good results with no considerable use ofcomputational resources, thus it is preferred for ML applications
Ø The step 𝛼 in successive iterations determines the learning rate. It could vary tostabilize convergence, e.g. set 𝛼 to a large value to start with and fine tune it as weapproach convergence

Gradient Descent Minimization Algorithm:Minimize 𝐽 𝐰 in terms of the parameter vector𝐰 by successivedescent at the iteration 𝑘 → 𝑘 + 1 towards the Gradient ∇𝐽 𝐰 ,weighted by the hyperparameter 𝛼:
𝐰( 𝑘 + 1) =  𝐰(𝑘)−𝛼∇𝐽 𝐰(𝑘)If the algorithm converges:𝐰 = lim

𝑘→∞
𝐰(𝑘)

Note: Convergence is guaranteed for linear regression



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGPolynomial Regression for Sample Elements of a Single Feature
• Linear Regression for input element 𝐱 = 1 𝑥 T:

y = ℎ𝐰 𝐱 = 𝑤0 + 𝑤1𝑥• Regression for 𝐱 = 1 𝑥 T  with 2nd degree polynomial:
y = ℎ𝐰 𝐱 = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2• Regression for 𝐱 = 1 𝑥 T with 𝑲 degree polynomial (hyperparameter 𝑲):

y = ℎ𝐰 𝐱 =
𝐾

𝑗=0
𝑤𝑗𝑥𝑗

Empirical trials to select hyperparameter 𝑲

𝑲 = 𝟏: Oversimplification (Underfitting)
𝑲 = 𝟓: Exaggeration (Overfitting)

Linear Regression, 𝑲 = 𝟏(Underfitting) 5th Degree Polynomial, 𝑲 = 𝟓(Overfitting)2nd Degree Polynomial, 𝑲 = 𝟐(OΚ)

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall2018



𝑔 𝑧 = 1
1 + 𝑒−𝑧Logistic/Sigmoid Function

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGClassification (1/2)
Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall2018Sample vectors 𝐱 of𝑚 dimensions (features)Binary Output (Classes, Labels): 𝑦∈ 0,1 or 𝑦∈ −, +Training Set: 𝐱 1 ,𝑑 1 ,…, 𝐱 𝑁 ,𝑑 𝑁• Logistic Regression Model: ℎ𝐰 𝐱 = 𝑔 𝐰Τ𝐱 = 1

1+𝑒−𝐰
Τ𝐱

𝐰Τ𝐱 =
𝑚

𝑗=0
𝑤𝑗𝑥𝑗 = 𝑤0 +

𝑚

𝑗=1
𝑤𝑗𝑥𝑗

Assumption: Considering that 𝑦 and 𝐱 are random variables/vectors, the ConditionalProbabilities of 𝑦∈{0,1} given an input 𝐱, provided that the system operates according to the
Logistic Regression ℎ𝐰 𝐱 = 1

1+𝑒−𝐰
Τ𝐱

are Bernoulli distributed. With determined parameters
𝐰 these are given by:

𝑃 𝑦 = 1 𝐱;𝐰 = ℎ𝐰 𝐱 ,  𝑃 𝑦 = 0 𝐱;𝐰 = 1−ℎ𝐰 𝐱or 𝑝 𝑦 𝐱;𝐰 = ℎ𝐰 𝐱 𝑦 1−ℎ𝐰 𝐱 1−𝑦

Due to the non-linear nature of ℎ𝐰 𝐱 the minimization LMS objective is replaced by theequivalent maximization Likelihood Ratio 𝐿 𝐰 over the training sample elements
{𝐱 𝑛 ,𝑑 𝑛 }, 𝑛 = 1,2,…,𝑁. Additionally, assuming that labels 𝑑(𝑛) in the training sample
𝐱 1 ,𝑑 1 ,…, 𝐱 𝑁 ,𝑑 𝑁 are independent binary random variables we obtain:

𝐿 𝐰 ≜ 𝑝{(𝑑 1 ,𝑑 2 ,…, 𝑑 𝑁 )|(𝐗;𝐰)}  =
𝑁

𝑛=1
𝑝 𝑑(𝑛) (𝐱(𝑛);𝐰

Assignment Rule of 𝑦 :
𝑦 = 1 αν ℎ𝐰 𝐱 > 𝟏 𝟐
𝑦 = 0 αν ℎ𝐰 𝐱 < 𝟏 𝟐



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNINGΤαξινόμηση – Classification (2/2)
Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall2018• Logistic Regression (follow up) :

𝐿 𝐰 =
𝑁

𝑛=1
𝑝 𝑑(𝑛) (𝐱(𝑛);𝐰 =

𝑁

𝑛=1
ℎ𝐰 𝐱(𝑛) 𝑑(𝑛) 1−ℎ𝐰 𝐱(𝑛) 1−𝑑(𝑛)

Instead of maximizing 𝐿 𝐰 we maximize its logarithm 𝑙 𝐰 = log𝐿 𝐰 :
𝑙 𝐰 =

𝑁

𝑛=1
𝑑(𝑛) logℎ𝐰 𝐱(𝑛) + 1−𝑑(𝑛) log (1−ℎ𝐰 𝐱(𝑛) )

and apply Gradient Ascent in iteration 𝑘 → 𝑘 + 1 with positive hyperparameter 𝛼 :
𝐰( 𝑘 + 1) =  𝐰 𝑘 + 𝛼 ∇𝑙 𝐰(𝑘)To evaluate ∇𝑙 𝐰(𝑘) and apply the Stochastic Gradient Ascent to determine theparameters 𝑤𝑗 with successive application to the 𝑛 = 1,2,…,𝑁 vectors of the Training

Set, we evaluate the partial derivatives 𝜕
𝜕𝑤𝑗
𝑙 𝐰 = … = 𝑑(𝑛)−ℎ𝐰 𝐱 𝑛 𝑥𝑗(𝑛) ⇨

𝑤𝑗 ≔𝑤𝑗 + 𝛼 𝑑(𝑛)−ℎ𝐰 𝐱 𝑛 𝑥𝑗(𝑛),    𝑗 = 1,2,…,𝑚 and 𝑛 = 1,2,…,𝑁
• The Perceptron Model: ℎ𝐰 𝐱 = 𝑔 𝐰Τ𝐱 where:

𝑔 𝑧 = 1,   𝑧 ≥ 0
0,   𝑧 < 0 Threshold Function

Similarly, we obtain an Iterative Learning Rule to determine the 𝑤𝑗 parameters:
𝑤𝑗 ≔𝑤𝑗 + 𝛼 𝑑(𝑛)−ℎ𝐰 𝐱 𝑛 𝑥𝑗(𝑛),  𝑗 = 1,2,…,𝑚 and 𝑛 = 1,2,…,𝑁


