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Course Outline (1/2)

Optimization Algorithms in Machine Learning: Definitions of Artificial Intelligence (Al) & Machine
Learning (ML). Training, Validation & Testing Datasets. Supervised, Unsupervised & Reinforcement
Learning. Discriminative & Generative Models, ChatGPT (Chat Generative Pre-trained Transformer) &
DeepSeek https://arxiv.org/pdf/2501.12948. Linear & Logistic Regression

Neural Networks, Hebb's Rule. Parameter tuning via Supervised Learning, Back-Propagation
Algorithm (Ch. 1 of [1], Ch. 1 of [7] & [9])

Unsupervised Learning: K-Means Clustering, Principal Components Analysis - PCA, Self-Organizing
Maps (SOM), Autoencoders (Ch. 5 & 8 of [1], Ch. 10 of [3])

Stochastic Models rooted in Statistical Mechanics: Markov Chains, State Transitions, Chapman -
Kolmogorov equations, transient & recurrent states, periodicity, irreducibility, asymptotic behavior,
ergodicity & stationarity (Ch. 11 of [1], & [4], [5])

Markov Chain Monte Carlo (MCMC) method, Metropolis - Hastings algorithm. Simulated Annealing,
Gibbs sampling. Generative Models, Boltzmann Machine, Restricted Boltzmann Machine (RBM), Deep
Belief Nets - DBN) (Ch. 11 of [1] & Ch. 4 of [3])

Reinforcement Learning & Dynamic Programming: Markov Decision Processes, Bellman’s Optimality
Criterion, Value & Policy Iteration optimization algorithms. Approximate methods in dynamic
programming, TD & Q-Learning (Ch. 12 of [1])

Reinforcement Learning for Internet Routing: The Bellman-Ford algorithm, Border Gateway Protocols
- BGP (NTUA ECE Course “Network Management - Intelligent Networks”
https://www.netmode.ntua.gr/wp-content/uploads/2023/01/NetMan _IP_Routing 2022 10 31.pdf)
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Course Outline (2/2)

Kernel Algorithms & Pattern Separability: Cover’s Theorem, applications to Radial-Basis Function
(RBF) Networks, Hybrid Learning, Support Vector Machines (SVM) (Ch. 5 & 6 of [1], Ch. 6 of [13])

Non-parametric classifiers, classification of sample elements in preset classes, K-Nearest Neighbors
(KNN) algorithm (Ch. 2 of [10], Ch. 8 of [13])

Statistical evaluation of Binary Classification: Confusion Matrix, Receiver Operating Characteristics
(ROC) & Area Under the Curve (AUC). Parametric probabilistic classification - Bayes & Naive Bayes
Classifiers (Ch. 6 of [13], Ch. 5 of [7])

Decision Trees: CART - Classification And Regression Trees algorithms, Gini Index, Random Forests,
Bagging - Bootstrap & aggregating (Ch. 8 of [10])

Recurrent Neural Nets - RNN: Associative Memory & Content Addressable Memory - CAM models,
Hopfield Networks, RNNs & time/character series (Ch. 13 & 15 of [1], Ch. 2 &3 of [3])

Natural Language Processing (NLP), Large Language Models (LLM), Long-Short Term Memory (LSTM)
networks, Transformers (Ch. 8, 9 & 10 of [8], Ch. 10 of [7])

eXplainable Al (XAl): Definitions, Intrinsic & Model-Agnostic XAl Methods, Pl (Permutation Feature
Importance), SHAP (SHapley Additive exPlanations), LIME (Local Interpretable Model Agnostic
Explanation) (Ch. 1, 2 & 4 of [15])
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Founding Fathers of Artificial Intelligence

Thomas Bayes (1701 -1761): Combinatorial Probabilities, Statistical Inference
https://en.wikipedia.org/wiki/Thomas Bayes

Johann Carl Friedrich Gauss (1777 -1855): Statistical Inference, Distributions of Sample Data
https://en.wikipedia.org/wiki/Carl Friedrich Gauss

Josiah Willard Gibbs (1839 -1903): Statistical Mechanics, Thermodynamics
https://en.wikipedia.org/wiki/Josiah Willard Gibbs

Ludwig Boltzmann (1844 -1906): Statistical Mechanics, Thermodynamics
https://en.wikipedia.org/wiki/Ludwig Boltzmann

Andrey Markov (1856 -1922): Probability Theory, Stochastic Processes
https://en.wikipedia.org/wiki/Andrey Markov

Alan Turing (1912 -1954): Computing Machinery, Codes, Artificial Intelligence, Logic
https://en.wikipedia.org/wiki/Alan Turing

John von Neumann (1903 -1957): Statistical Modelling, Game Theory, Entropy
https://en.wikipedia.org/wiki/John von Neumann

Andrey Kolmogorov (1903 -1987): Probability Theory
https://en.wikipedia.org/wiki/Andrey Kolmogorov

Richard Bellman (1920 - 1984): Dynamic Programming
https://en.wikipedia.org/wiki/Richard E. Bellman
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Fathers of Machine Learning

Nicholas Metropolis - Mntpoémoulog (1915 - 1999): Monte Carlo Simulations, Simulated Annealing
https://en.wikipedia.org/wiki/Nicholas Metropolis

Donald Hebb (1904 - 1985): Neurophysiology, Learning Rules
https://en.wikipedia.org/wiki/Donald O. Hebb

Frank Rosenblatt (1928 - 1972): Psychology & Artificial Intelligence (Al), Neural Networks - Perceptron
https://en.wikipedia.org/wiki/Frank Rosenblatt

David Rumelhart (1942 - 2011): Psychology & Artificial Intelligence (Al), Back Propagation Algorithm
https://en.wikipedia.org/wiki/David Rumelhart

Vladimir Vapnik (1936): Statistical Learning, Support Vector Machines (SVM)
https://en.wikipedia.org/wiki/Vladimir Vapnik

Teuvo Kohonen (1934 - 2021): Self-Organizing Maps (SOM)
https://en.wikipedia.org/wiki/Teuvo Kohonen

John Hopfield (1933): Physics, Biology, Recurrent Neural Networks (RNN) (Nobel Prize in Physics, 2024)
https://en.wikipedia.org/wiki/John Hopfield

Geoffrey Hinton (1947): Physics, Boltzmann Machines, Deep Belief Networks (Nobel Prize in Physics, 2024)
https://en.wikipedia.org/wiki/Geoffrey Hinton

Demis Hassabis (1976): Al Research, Protein Structure Prediction (Nobel Prize in Chemistry, 2024)
https://en.wikipedia.org/wiki/Demis Hassabis
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Machine Learning & Artificial Intelligence

A Definition of Artificial Intelligence - Al:

Artificial intelligence leverages computers and machines to mimic the problem-solving
and decision-making capabilities of the human mind

(IBM: https://www.ibm.com/topics/artificial-intelligence)

A Definition of Machine Learning - ML:

Machine learning is a branch of artificial intelligence (Al) and computer science which

focuses on the use of data and algorithms to imitate the way that humans learn, gradually
improving its accuracy

(IBM: https://www.ibm.com/topics/machine-learning)
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Discriminative Machine Learning Models

Definition:

Classification or Regression (estimation) of data elements via conditional probability
estimates of plausible outputs (label) given input sample elements, based on what the
model learns by iteratively feeding sample elements of a training dataset and checking
generalization by applying elements of a testing dataset

Applications:

» Classification of sample elements based on their characteristics (features)
* Pattern recognition based on principal sample element features
* Medical imaging, diagnostics semi-automation tools

* Prediction (regression) of output based on pre-stored pairs of input-output elements
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Generative Al Models

Definition:

Generation of sample elements conforming to joint input-output statistics estimated by
iterative input of training sample elements from which the system infers joint
probabilities of the output with input features (virtual reality output, risk of
hallucinations)

Applications:

Bayes classifiers, a very popular and simple generative classification method

Current hype, with massive training datasets and lengthy training times (months!),
expensive environmentally hazardous datacenters requirements, cloud-hosted
multiprocessor GPUs (Graphics Processing Units) and highly specialized staffing

Generation of text elements and chatboxes based on Large Language Models - LLM,
text translation, voice recognition, production of simulated (virtual reality) images,
idealized background screens, animated cartoons...

Extensive training of Search-Engines (Google, MS Bing...), OpenAl - MS ChatGPT (Chat
Generative Pre-trained Transformer), DeepSeek chatbox...

Offered As-a-Service (AaS) to customers, stirring fierce competition for supremacy
amongst the US, China, Europe (?)
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Introduction to Machine Learning Concepts (1/6)

Causes-and-Effects of the Artificial Intelligence Revolution:

The cataclysmic developments of distributed (cloud) computing and storage
infrastructures enables extremely complex algorithms of statistical inference and
stochastic optimization, based on large historical datasets

Processing of multi-dimensional huge data (big data) with a massive number of
characteristics (features) triggers novel data mining algorithms to estimate, predict,
classify and generate new sample elements, statistically close to pre-stored historical data

The ever-deepening understanding of learning methods in biological systems, leads to
emulation of Human Intelligence via Artificial Intelligence algorithms that characterize or
generate new instances, always with some error probability (expected in statistical
inference decisions) and hopefully minute danger to lead to hazardous hallucinations

The advances in Natural Language Processing (NLP) and Text Processing fields, coupled
with technology breakthroughs and the ubiquitous Internet availability, lead to generative
massive models often referred to as Large Language Models (LLMs), with human-friendly
attributes and tremendous commercial potential and geopolitical might
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Introduction to Machine Learning Concepts (2/6)
Risks of the Artificial Intelligence Revolution:

» Artificial Intelligence exhibits risks associated with all (r)evolutions (e.g. widening of global
inequalities, re-alignment of work-force, new employment rules) and new challenges (e.g.
how to protect Individual Privacy Rights - IPR & enforce Intellectual Property)

» Use of (Generative) Al to spread fake news, promote plagiarism, infringe Intellectual
Property (e.g. unauthorized use of Wikipedia texts by OpenAl for ChatGPT training)

* Humanity will cast regulations (e.g. 2016/6/91 EU General Data Protection Regulation -
GDPR) to harness use of big data and smart algorithms (perhaps a wishful thinking...)

Geoffrey Hinton: British - Canadian, Born in London UK 1947

« 1977:Ph.D., University of Edinburgh, Scotland, UK

 Academic Career UK, USA, Canada

* Pioneer in Neural Networks research (Boltzmann Machines, Deep Belief
Networks, Generative Al...)

e 2013-2023: Scientific Advisor of Google & Professor, University of Toronto

* May 2023: Resigned from Google to freely speak of uncontrollable Al risks

* Sept. 2024: Nobel Prize in Physics

NY Times, May 2023 on G. Hinton: “The Godfather of A.l.” Leaves Google and Warns of
Danger Ahead: Generative A.l. can already be a tool for misinformation. Soon, it could be a risk
to jobs. Somewhere down the line, tech’s biggest worriers say, it could be a risk to humanity
https://www.nytimes.com/2023/05/01/technology/ai-google-chatbot-engineer-quits-hinton.html
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Introduction to Machine Learning Concepts (3/6)

Dataset Definitions
https://en.wikipedia.org/wiki/Training, validation, and test sets

* Training Set: Sample (set) of examples (sample points or elements) used for tuning the
parameters of a specific configuration model during the training phase of ML

 Validation Set: Sample (set) of examples, not used for training, with features similar to the
training sample elements, used to validate convergence of the training phase. It unusually
leads to the selection of configuration hyperparameters of a decision model by comparing
various options e.g. in terms of accuracy and ability to generalize that might suffer from
excessive reliance to training examples (overfitting). The validation dataset could not be
defined or (in most cases) it could be a selection of elements, e.g. a 10 - 20% of examples
filtered from the training dataset

» Test Set: Sample (set) of examples, not explicitly used for training and validation, inserted
as input to a finally selected and tuned ML system. It assesses the accuracy and the
generalization potential of a model fed with unseen data points, prior to its actual
production deployment

* In case that no validation dataset is defined, performance of a model is deduced directly
via the test dataset


https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets
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Introduction to Machine Learning Concepts (4/6)

lllustration of Overfitting
https://en.wikipedia.org/wiki/Training, validation, and test sets

Training set

e

r_——/ ]

-1 0 1 2

10

=

-10

Test set
@
°
%
. ’/—0\
e °® / “ \
A ® ® ® 1
./ k3
*
[ A% |
3
®
!
-2 -1 0 1 2

A training set (left) and a test set (right) from the same statistical population are shown as blue points. Two =
predictive models are fit to the training data. Both fitted models are plotted with both the training and test sets.
In the training set, the MSE of the fit shown in orange is 4 whereas the MSE for the fit shown in greenis 9. In
the test set, the MSE for the fit shown in orange is 15 and the MSE for the fit shown in green is 13. The orange
curve severely overfits the training data, since its MSE increases by almost a factor of four when comparing the
test set to the training set. The green curve overfits the training data much less, as its MSE increases by less
than a factor of 2.
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Introduction to Machine Learning Concepts (5/6)

Parameters & Hyperparameters
https://en.wikipedia.org/wiki/Hyperparameter optimization

The parameters tuned during training refer to a specific model structure (e.g.
determination of a neural network synaptic wrights. They are determined by iterations on
a specific input-output configuration that aim to converge in an estimated accurate ML
model, subsequently fed by training sample points

Parameters concerning the model structure (e.g. number of neurons, layers of hidden
neurons) and to convergence criteria are referred to as hyperparameters

The hyperparameters are selected based on the designer experience and/or with
repetitions of parameter tuning (training) and validation to improve model accuracy prior
to the testing of the ML model

Search methods for hyperparameters selection include Exhaustive search, Grid search,
random search... depending on the acceptable number of trials of tuned models

The selection of hyperparameters if there is no validation dataset can be performed with
repeated trials over the test dataset


https://en.wikipedia.org/wiki/Hyperparameter_optimization
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Introduction to Machine Learning Concepts (6/6)
General Machine Learning Categories

» Supervised Learning
* Training sample elements (examples) include an output label, appended to input
features (labeled training sample points). The system parameters are tuned to
minimize output - label deviations by iteratively applying training examples

» Unsupervised Learning
* The system infers input sample statistics from the training sample elements, with
no guidance from a priori known output values (labels). The system tunes its
parameters to fit important (by assumption) statistical properties of the training
dataset by discovering stochastic features, patterns present in a large number of
training examples (unlabeled training datasets). This converges to predictions of
applicable models and methods e.g. for assigning input elements into clusters

» Reinforcement Learning
» This category is closely related to stochastic control systems that affect the state
evolution of an outside environment. The system (a controller) reacts to
reinforcement signals from external critics related to the environment, who
enforce actions that may impact the evolution of the environment state towards a
long-term expected cost objective. Parameter tuning may persist beyond a training
period, as the actions can dynamically affect the evolution of the environment

Supervised learning results into efficient, fast and reliable convergence for decision
making problems. But the requirement for not readily available labeled datasets
often favors unsupervised methods
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Generic Model of Supervised Learning

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall
2010

* The system goal is to assign input vectors (input sample
points, examples, instances) x = [x4 xz...xm]T to output values
y (targets, response values). The coordinates x; encode m
characteristics (features) of the input vector x

We seek the input-output function y = h(x) = d that 5 ;
minimizes deviatiops (errors) between the labe.l d (known to Training | {x () d (1))
an external supervisor) and the response y for input vectors

set
in the Training Set of N pairs {x(n),dm)},n =1,2,...,.N X !
* The form and parameters of /i (-) result from the learning 0 "' i
algorithm that converges to the system goal for the N Learn.mg
elements of the training sample algorithm
d(n) =ym) =h(x(n)) JL

* If y is a finite integer we have a Classification problem inpliﬁh( ) Qutput: y = i(x)

(for 2 classes we have binary classification)

* If y assumes continuous real values we have a Regression
problem
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Supervised Learning Example - Linear Regression

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall
2010

Find the Linear Function h(x) that predicts the value y = h(x) based on the property
area x the Labeled Training Sample Z={(x(1),d(1)),...,(x (N),d(N))} of property
sales registered in the area

housing prices

1000 -
AREA VALUE ol |
(square feet) (1000$)
2104 400 war i
1600 330 7001 7
2400 369 g 600 2
1416 232 2 sl ]
3000 540 8
& 400F -
= .-‘)ix/x:_g * ®

300 T s g x -
Sample Elements for N =47 Cases 200l _*_f.,;}ffxfx x = _
100 — -
or £

500 10ICID 1 SIDO ,?DIOO 2500 SDIDO 35IDEI 4DIEIU 45ICID 5000

square feet

Linear Regression: y = h (x) =0.1392 x + 89.6
Predicted Value for a Property of 2500 square feet: $437,000
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Linear Regression Parameter Tuning (1/2)

> The coordinates of the input vector x = [x x1...X,,] 'correspond to encoding of its m
features: x{,x,,...,x,, with xq = 1 (intercept term)

> The linear regression system computes parameters w = [w, w, ...wm]T of the functiony =
hy, (X) = woxy + Wixy + ..+ W,,x,, =wW!x thatyield to small deviations for the labeled
Training Set 2 ={(x(1),d(1)),...,(x(N) ,d(N))}
* x(n) : Input training vector n =1,2,..., N (regressors)
* d(n): Known output value (label) of training vector n (regressand)
* y(n) =h, (x(n)): Current system response for training vector x(r)
* &(n) =d(n)—y(n): Deviation (error) for training input {x(n) d(n)},n =1,2,..,.N
* Forlarge N, x(n), d(n), e(n) can be viewed as sample values of random variables

» Convergence criterion: Least Mean Square - LMS yielding the parameters w of h,,(x) or

equivalently determine w that minimizes the Mean Square Error (MSE) | (w)
N

JwW) 22 [eG] =) [dn)-hyy (x(D)]?
n=1

n=1
» With one input variable xy = 1,x; = x the Linear Regression is formulated as:
x =[1x]%, w=[wy wy]', y=hyy(x)=wIx =w,+w;x
N

J@) = 5 ) dn)~(wy + wrx())

n=1
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. Linear Regression Parameter Tuning (2/2)

~ Gradient Descent Minimization Algorithm:

'\ Minimize | (w) in terms of the parameter vector w by successive
| | descent at the iteration k — k + 1 towards the Gradient V] (w),
/| weighted by the hyperparameter a:

w(k+1) = wlk)-aV](w(k))
If the algorithm converges: w = lim wi(k)

k— o0

Notert . cced-fort .
LMS Convergence Options (Widrow-Hoff)

« Batch Gradient Descent: Search for w = [w, w;..w,,]" that minimizes ] (w) by
considering in every iteration the whole training set 2 ={(x(1),d(1)),...,(x(N) ,d(N))}

w; = w;- aag(—;v) =w; + azfj:l |d (n)-h,, (x (n))]xj(n), j=01.2,..,m Vi

» Stochastic (Incremental) Gradient Descent, Stochastic Approximations: Search for w by
considering a random (stochastic) sequence of single input training elements
(x(n),d(n)), n =1,2,.....N until convergence

w; =W+ a [d (n)-h,, (x(n))] x]-(n), j=012,..m n=12,.N

» The stochastic method usually yields good results with no considerable use of
computational resources, thus it is preferred for ML applications

» The step a in successive iterations determines the learning rate. It could vary to
stabilize convergence, e.g. set a to a large value to start with and fine tune it as we

approach convergence
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e Linear Regression fo

Polynomial Regression for Sample Elements of a Single Feature

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall

r input element x = [1 x] '

y =h, (X) =wy+ wqx

« Regression for x =[1 x]T with 2" degree polynomial:

y =hy (X) =wg+ wix + wyx

2
« Regression for x =[1 x]! with K degree polynomial (hyperparameter K):

K
y =hy, (x) :2 wjxj
=0

Empirical trials to select hyperparameter K

;Lineér Re;gressiion, 7( = 1
(Underfitting)

ond Degéree P:olyn;omiall K=2

(OK)

5 Deg;ree Ijlolyn':omiaél, K=5

K = 1: Oversimplification (Underfitting)
K = 5: Exaggeration (Overfitting)

(Overfitting)
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Classification (1/2)

Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall -
Sample vectors x of m dimiensions (features)
Binary Output (Classes, Labels): y€{0,1} or ye {—, +}

Training Set: {(x(1),4(1)),...,(x(N),d(N))}
* Logistic Regression Model: ., (x) = ggw x)

T T T T T T T T

1 _
1—wa =

zZ) =
wlix wa—w +wa 3 1+e™
0 Logistic/Sigmoid Function

Assumption: Considering that iy and x are random varlables/vectors, the Conditional
Probabilities of y€{0,1} given an input x, provided that the system operates according to the

Logistic Regression h,, (x) = L — are Bernoulli distributed. With determined parameters

1+e W X )
w these are given by: Assignment Rule of i :

= 1
P(y =1jx;w) =hy, (x), P(y =0|x;w) =1-hy (x) y=1lavi, (9 >/,

or p(yhx;w) = (hy (00 (1=, ()1 y=0avh, (9 <1j
Due to the non-linear nature of &, (x) the minimization LMS objective is replaced by the
equivalent maximization Likelihood Ratio L. (w) over the training sample elements
{x(n),d(n)},n=1,2,..,N. Additionally, assuming that labels d(n) in the training sample
{(x(1),d(1)),...,(x(N) ,d(N))}are independent binary random variables we obtain:
N

LW) 2 pld (D) 4@, dAOD)w) =] [piCaomixomw)}
171="1
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Ta&wvopunon - Classification (2/2)
Based on Andrew Ng, “CS229 Lecture Notes”, Stanford University, Fall

2010
» Logistic Regression (follow up) :

N N
L(w) :l_[ p{(d(n)|(x(n);w)} =1_[ {(Bye (x(1))) ) (1= (x())) 140}
n=1 n=1

Instead of maximizing L (w) we maximize its logarithm [ (w) =log L (w):

N
[(w) =2 {d(n)loghy, (x(n)) + (1-d(n)) log (1-hy, (x(n)) )}
n=1

and apply Gradient Ascent in iteration k — k + 1 with positive hyperparameter « :
w(k+1) = w(k) + a VI(w(k))
To evaluate VI (w(k)) and apply the Stochastic Gradient Ascent to determine the

parameters w; with successive application to then =1,2,...,N vectors of the Training

Set, we evaluate the partial derivatives %l (w) = ... =[d(n)-hy (x(m)] x;(n) =
]
w; =W+ a [d(n)-h,, (x(n))] x]-(n), j=12,.mandn =1.2,.,N
* The Perceptron Model: 1, (x) = g(wa) where:
1, z>0

2(z) = {O, z 20 Threshold Function

Similarly, we obtain an Iterative Learning Rule to determine the w; parameters:

w; =w;+ aldn)-hy, (x(m)] x;(n), j=12,.,m andn =12,...N



