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Course Outline 

Basic definitions of Machine Learning (ML) & Artificial Intelligence (AI). Training, Validation & Testing 
Datasets. Review of Opimization Algorithms in ML: Supervised, Unsupervised, Reinforcement Learning. 
Discriminative & Generative Models, the Chat Generative Pre-trained Transformer - ChatGPT hype.  
Linear & Logistic Regression 

Neural Networks, Hebb’s rule, parameter setting via Supervised Learning, Rosenblatt's Perceptron, 

Back-Propagation Algorithm 

Unsupervised Learning: K-Means Clustering, Principal Components Analysis (PCA), Self-Organizing Maps 
(SOM), Autoencoders 

Machine Learning & Statistical Mechanics Concepts: Markov Chains & state classification. Chapman-
Kolmogorov equations, asymptotic behavior, irreducibility, recurrence, ergodicity, invariant probabilities 

Markov Chain Monte Carlo (MCMC) methods, Metropolis-Hastings algorithm, Simulated Annealing, Gibbs 
Sampling. Generative models, Boltzmann Machine, Restricted Boltzmann Machine (RBM), Deep Belief 
Networks (DBN) 

Reinforcement Learning and Dynamic Programming:  Markov Decision Processes, Bellman’s Optimality 
Criterion, optimization algorithms – Value Iteration & Policy Improvement. Approximate dynamic 
programming methods, Temporal-Difference (TD) & Q-Learning   

Reinforcement Learning & Internet Routing: Bellman – Ford algorithm, Border Gateway Protocols (BGP) 

Kernel Classification Methods: Pattern Separability - Cover’s Theorem. Applications in Radial-Basis 
Function (RBF) Networks, Hybrid Learning and Support Vector Machines (SVM) 

Non-parametric Classifiers, based on K-Nearest Neighbors (KNN) labelled classification 

Statistical evaluation of binary classification, Confusion Matrix, Receiver Operating Characteristics (ROC) 
& Area Under the Curve (AUC). Parametric Probabilistic Classification, Bayes rule, approximate methods, 
Naive Bayes Classifiers  

Decision Trees: Binary Splitting, Classification and Regression Trees (CART), Gini Index, Random 
Forests, Bagging (Bootstrap & aggregating) algorithms 

Recurrent Neural Nets (RNN) & Neurodynamic Models: Associative Memory - Content Addressable 
Memory (CAM), Hopfield Networks. Sequence modeling RNNs based on time/character series & speech 
processing datasets, Long-Short Term Memory (LSTM) nets 

Explainability in ML/AI - XAI (eXplainable AI): Definitions, Intrinsic & Model Agnostic XAI methods, PI 
(Permutation Feature Importance), SHAP (Shapley Additive exPlanations), LIME (Local Interpretable 
Model Agnostic Explanation)  

 

Laboratory Exercises 

Students are required to practice via Python-based exercises 
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