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Abstract—Interconnected cyber infrastructures, accessible via
the Internet, are a common target of DDoS attacks intending to
downgrade their operations and services. Collaborative protec-
tion mechanisms are prime candidates to defend against massive
attacks but, although collaborations were instrumental in the
Internet success story, this is largely not extended to multi-
domain cyber security. Notably, collaborative DDoS detection
is hindered by data privacy legislations, while mitigation is
limited to operations of stand-alone rigid firewalls. Motivated by
these shortcomings, we propose a Federated Learning schema
for collaborative privacy-aware DDoS detection. Coordination
is orchestrated by a third trusted party that aggregates ma-
chine learning models proposed by collaborators based on their
private attack and benign traces, without exchanging sensitive
data. Attacks detected via the privacy-aware federated model
are subsequently mitigated by efficient and scalable firewalls,
implemented within the eXpress Data Path (XDP) data plane
programmability framework. Our approach was evaluated using
production traffic traces in terms of packet classification accuracy
and packet processing performance. We conclude that our
proposed Federated Learning framework enabled collaborators
to accurately classify benign and attack packets, thereby improv-
ing individual domain accuracy. Furthermore, our data plane
programmable firewalls promptly mitigated large-scale attacks
in emulated federated cyber infrastructures.

Index Terms—Federated Learning, Federated Clouds, Multi-
domain Networks, Multi-domain DDoS Protection, Pro-
grammable Data Planes, eXpress Data Path (XDP)

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks are a major
threat targeting critical resources of cyber infrastructures to
degrade the level of their offered services. These attacks
are delivered to victim domains via interconnected networks,
e.g. Autonomous Systems (AS’s) of the global Internet and

This work was partially supported by the European Commission H2020
Framework Programme (Grant Agreement No. 856726, GN4-3), the Special
Account for Research Funding of NTUA and the FELICE H2020 Project
(Grant ID 101017151)

overwhelm the link capacity and processing resources of
targeted networks.

Although collaborative protection mechanisms among AS’s
were instrumental in the Internet success story to defend
against large-scale attacks, their extension to multi-domain
cyber environments for coordinated DDoS detection is not
straightforward. This is mainly hindered by strict data privacy
legislations, i.e. GDPR [1]. Federated Learning (FL) [2] is
a promising approach to address such privacy regulations by
allowing collaborating parties to cooperatively train Machine
Learning (ML) models without exposing private data. FL has
been proposed for various use cases like word prediction [2],
healthcare applications [3] and image recognition [4]. Few
efforts [5], [6] consider collaborative DDoS detection without
addressing the needs of multi-domain cyber infrastructures.
These environments require flexible and efficient methods to
identify large-scale attacks, while exchanging attack informa-
tion should rely on tools and data packet exchange protocols,
e.g. BGP, that are widely adopted among collaborating do-
mains.

In contrast to collaborative DDoS detection, collaborative
mitigation is widely employed in production environments.
DDoS attacks are mitigated by filters enforced by collaborating
domains. These filters are typically implemented in routing
devices and discard either all traffic (BGP blackholing [7])
or the malicious portion via a limited number of flow-based
rules (e.g. BGP Flowspec [8]). Our early work [9], [10]
illustrated that DDoS mitigation relying on flow-based filtering
schemes is less effective than signature-based ones, where
filtering rules are defined by combining data packet fields of
multiple protocol layers. Thus, we leverage programmable data
planes (eXpress Data Path – XDP [11]) to design a signature-
based filtering mechanism tailored to evolving federated cyber
infrastructures.

In this paper, we extend our early work on signature-



based DDoS protection [9], [10] to collaborative multi-domain
cyber infrastructures. Our schema detects malicious packet
signatures using Multi-layer Perceptrons (MLPs); these are
cooperatively trained by a centralized coordinating entity via
FL techniques that do not expose private benign and attack
data of collaborators. Subsequently, malicious packets are
filtered in XDP-enabled [11] programmable firewalls deployed
within the victim network infrastructure. For large-scale at-
tacks, mitigation can be activated on-demand in collaborating
transit domains (e.g. transit AS’s).

The remainder of this paper is structured as follows: In Sec-
tion II we discuss related efforts on collaborative DDoS pro-
tection and outline our key contributions; Section III presents
a high-level overview of our mechanism and its core design
principles; Section IV provides implementation details for the
proposed DDoS protection framework; Section V presents
experimental evaluations for DDoS detection accuracy and
mitigation performance on DNS Amplification attacks. Section
VI summarizes our work and suggests future directions.

II. RELATED WORK & CONTRIBUTIONS

DDoS detection and mitigation for collaborative network
domains, e.g. AS’s, have been widely investigated. The former
refers to mechanisms that allow network domains to share
data for enhancing their attack detection capabilities. The latter
refers to filters raised on-demand by collaborators to drop the
attack traffic. Related efforts are analyzed in subsections II-A
and II-B accordingly; in subsection II-C Federated Learning
schemes for DDoS protection are presented. Finally, in sub-
section II-D we summarize our key contributions.

A. Collaborative DDoS Detection
In [12], network traffic is monitored in disperse points

of multiple network domains in an attempt to concurrently
detect attacks targeting subnetworks. Attacks are identified by
concurrent alerts generated by collaborating network domains.
In [13], Internet Service Providers (ISPs) collaborate to detect
ongoing DDoS attacks; based on predefined static rules, they
exchange belief scores for suspected DDoS attacks. In [14],
security events are exchanged between collaborating ISPs to
validate ongoing attacks and provide appropriate countermea-
sures. The main focus of this work is on the communication
process between collaborators. In [15], an effort for creating
a European Federation of ISPs, Internet Exchanges (IX) and
Academic Networks is made; the members are exchanging
attack traffic characteristics via a centralized platform without
exposing victim IP addresses for privacy concerns.

B. Collaborative DDoS Mitigation
BGP blackholing [7] is the most common way for col-

laborative DDoS filtering. Victim domains request from up-
stream/peer networks to drop all traffic destined to them to
protect their internal infrastructures. Although this safeguards
transit links, benign traffic is also dropped.

A collaborative approach for filtering reflection-based DDoS
attacks is proposed in [16]. The mitigation process is co-
ordinated via a third trusted party that collects sensitive

data from collaborating entities and applies threshold-based
filtering rules to multi-domain network environments. Contrary
to our proposed framework, [16] cannot be extended to non-
reflection based attacks without exposure of sensitive data,
while instead of using fixed thresholds, our approach relies
on machine learning algorithms to generalize from training
data.

In [17], a collaborative schema for DDoS mitigation in
SDN-domains is proposed. Upon the detection of the attack,
specialized reports including the identified malicious sources
and the victim IPs are generated; these are transferred to
network domains located across the attack path, that enforce
filtering rules based on the reputation of the victim domain.
We extended [17] in [18], in which signaling, coordination,
and orchestration of the collaborative mitigation is based on
Blockchain technology; the proposed framework was tailored
to federated trusted environments of Tier 1 ISPs [19].

C. Federated Learning for DDoS attacks

In [5], a DDoS detection and mitigation framework for
Internet of things (IoT) environments is proposed. IoT nodes
collaborate to train a common Machine Learning (ML) model
via the Federated Averaging technique to accurately detect
malicious traffic. This is subsequently filtered in a distributed
fashion at multiple IoT nodes. In [6], a DDoS detection schema
based on Federated Averaging is presented. It uses flow-based
features to identify various DDoS attack types; DDoS miti-
gation was considered out of their scope. Similarly, solutions
for collaborative DDoS detection based on FL are proposed in
[20], [21], [22]. Moreover, in [23], a multi-task FL model is
proposed. It concurrently performs DDoS detection, VPN/Tor
traffic recognition and network application identification. This
reduces the management overhead of individual ML models
while respecting network data privacy. However, these works
do not consider DDoS attack mitigation and are not directly
applicable to interconnected cyber infrastructures.

D. Key Contributions

We present below the key contributions of this work:
• In related efforts, collaborators exchange either coarse-

grained data for DDoS detection [12], [14], or predefined
static rules [13], [15]; they also focus only on attack
data [14], [15], [17], [18]. In contrast, our FL scheme
(i) enables for DDoS detection using both benign and
attack data without exposing private information and (ii)
creates ML models with generalization capabilities able
to identify "unseen" (not trained with) benign and attack
packets.

• Most FL schemes [5], [6], [23] simulate multi-domain
data by splitting single datasets into multiple parts. In-
stead, we employ production network traffic aggregated
by collaborating domains, e.g. AS’s, to perform fully
realistic experiments.

• Typical filtering mechanisms employed in collaborative
DDoS mitigation [17], [18] have the following draw-
backs: they (i) support packet filtering based on limited



packet field combinations and (ii) pose limitations on
the supported number of rules. In contrast, we consider
an XDP-based data plane programmable firewall that
enables packet filtering based on arbitrary packet field
combinations and scales its performance with the number
of cores.

III. DESIGN PRINCIPLES & HIGH LEVEL OVERVIEW

A. Design Principles

We present below the core design principles of our schema:
• Collaborative DDoS Detection via Federated Learning:

Network traffic is classified as malicious or benign based
on pre-agreed supervised learning models (e.g. common
MLP architecture and feature definitions) trained via the
Federated Averaging technique [2]. Thus, collaborating
domains converge to federated ML models without shar-
ing private data. This enables them to learn from foreign
benign and attack packets without sharing their content.

• DDoS Mitigation via cloud-native and scalable pro-
grammable firewalls based on the XDP framework: Sim-
ilarly to [24], we employ data plane programmability
frameworks (XDP) to design high-performance Commer-
cial off-the-shelf (COTS) firewalls for cyber infrastruc-
tures. In contrast to legacy router based filters, these can
be programmed to match and promptly block arbitrary
packet field combinations while scaling their resources
on-demand in an NFV-compliant fashion.

• Upstream propagation of DDoS filtering requests: Our
scheme enables the dissemination of signature-based fil-
tering rules among participating domains, e.g. collab-
orating Autonomous Systems (cAS’s). These rules are
distributed to collaborators based on methods that are
native to multi-domain environments, i.e. using BGP
sessions. These can be used to effectively block attacks
before reaching the victim domain, extending the limited
filtering capabilities of blackholing or flow-based protec-
tion mechanisms.

B. High-level Overview

A high-level design of the proposed architecture for collabo-
rative DDoS protection is depicted in Fig. 1. Malicious actors
launch DDoS attacks attempting to overwhelm the network
bandwidth and/or processing resources of a host IP/subnet
located in the victim domain, e.g. victim AS (vAS). Both
malicious and benign traffic reach vAS via interconnected
domains e.g. cAS(1), cAS(2). Monitoring (packet-based) data
are exported by network devices e.g. edge routers and orga-
nized in packet signatures; these are in turn used as input
to the DDoS Detection app. There, pre-trained Multilayer
Perceptrons (MLPs) classify packet signatures as malicious
or benign (step i). The MLP training process has been con-
ducted via FL techniques that enable distributed and privacy-
preserving learning amongst collaborating AS’s (cAS’s). The
training process is orchestrated by the Collaboration Manager
(step a) in pre-agreed time-periods. We assume that the FL

Fig. 1. Collaborative DDoS Protection Architecture

training process will be completed before any of the collabo-
rating parties is attacked. Furthermore, our proposed schema
adopts a cross-silo federated learning architecture among a
moderate number of highly available and fault tolerant cyber
infrastructures, e.g. georedundant data centers.

The DDoS Detection app conveys to the DDoS Mitigation
app the identified malicious signatures and the corresponding
victim IP/subnet (step ii). In turn, a Firewall Instance (FI) is
created (step iii) that uses the identified malicious signatures
as filtering rules. After FI instantiation, the DDoS mitigation
app notifies the edge router to redirect traffic destined to the
victim to the corresponding FI (step iv). Malicious traffic is
dropped while benign traffic is bounced back and forwarded
to its original destination (step v).

The DDoS Detection app based on traffic/system metrics,
e.g. increased link utilization, can request help from up-
stream/peer domains to protect its network/compute resources.
The Collaboration Manager identifies adjacent cAS’s that for-
ward attack traffic [17] and populates the identified malicious
signatures coupled with the victim IP address. cAS’s, willing
to filter malicious traffic, receive the requested signatures and
signal their own DDoS Mitigation app (step b) to on-demand
mitigate the offending traffic.

IV. COLLABORATIVE DDOS DETECTION & MITIGATION
ARCHITECTURE

Our framework consists of three distinct applications (apps):
(i) DDoS Detection, (ii) DDoS Mitigation, and (iii) Collabo-
ration Manager. These are detailed in subsections below.

A. DDoS Detection Application

The DDoS Detection app retrieves packet-based data from
external monitoring mechanisms and identifies malicious



Fig. 2. Federated Learning for collaborating AS’s

packet signatures. Signature classification is conducted by
MLPs trained via FL techniques.

Monitoring data are collected within time-windows and
aggregated based on preselected packet fields, forming packet
signatures. Packet signatures may be represented by a vector
X = [x1 x2 . . . xi], where xi corresponds to packet field value
i. Vectors X are used as input to MLPs, that classify them as
malicious or benign. Malicious signatures are organized per
destination IP address to generate filtering rules at the DDoS
Mitigation app of the vAS.

The accuracy of the MLP model affects significantly the
identification of malicious packets and the subsequent mitiga-
tion, since filtering rules are based on the identified malicious
signatures. To improve the accuracy of the MLP model without
compromising privacy, we considered a collaborative learning
approach based on Federated Averaging [2]. Prerequisite for
training a Federated Model (FM) is the use of a common
MLP model coordinated by a third trusted party (Fig. 2). We
consider that FM may reside in a neutral independent coordi-
nator. Such understanding is common in Internet architectures
e.g. major Internet eXchanges (IXes) [25]. Indicatively, an
IX on top of the offered interconnection services may offer
an FL coordination service to its customers. Therefore, as
an independent entity, it would ensure high availability and
guarantee customer privacy against inference attacks [26].

Initially, packet fields (features) relevant to an attack vector
must be selected [10]. To reduce training times and the
FM complexity, inconsequential features may be eliminated.
This could be achieved by leveraging on feature importance
methods or interpretable machine learning techniques [27].

Participating domains agree on common MLP hyperpa-
rameters (e.g. FM architecture, learning rates). The training
process starts with an initial FM weight vector. In each training
iteration (round) a new set of weights wFM is evaluated and dis-
tributed amongst the k collaborating AS’s. Each collaborator i
= 1. . . k uses wFM as initial weights and subsequently updates
its local weights wi based on its private training data Ni. These
are conveyed to the FM third party coordinator that calculates

Fig. 3. DDoS Mitigation Application Architecture

the new weights wFM based on the following equation:

wFM =

k∑
i=1

Ni

N
wi, whereN =

k∑
i=1

Ni

A round is completed after wFM calculation with new weights
distributed to the cAS’s. Finally, each cAS adopts the FM
update that achieves the highest accuracy on its local validation
dataset. In case collaborators share their local accuracies per
round, a common FM may be universally adopted once the
(weighted) average accuracy for all participants reaches an
acceptable level.

B. DDoS Mitigation Application

The DDoS Mitigation app receives requests for ongoing
attacks either from the DDoS Detection app of the victim or
the Collaboration Manager of cAS’s. Subsequently, this app
may raise appropriate mitigation countermeasures.

Typical filtering mechanisms e.g. Access Control Lists
(ACLs), can match packets based on combinations of mul-
tiple but predefined packet fields. These rules are stored in
network devices with stringent memory limitations [28]. Thus,
offloading DDoS filtering to an external firewall should (i)
support any packet field combination (signature) that can block
malicious packets, (ii) have no limit on the number of filtering
rules, and (iii) allow dynamic filtering rules creation, read,
update, and deletion (CRUD).

We implemented the mitigation app based on the XDP data
plane programmability framework. Note that our XDP-based
firewall conforms to the NFV paradigm and could be offered
as a VNF service in cloud infrastructures, similarly to [24].
As the XDP framework performance depends on the number
of processors, our firewall is able to adjust to high-speed
DDoS attacks by dynamically assigning additional processor
instances (vCPU’s).

XDP memory structures for storing packet signatures are
Berkeley Packet Filter (BPF) Maps; these do not allow
ternary packet field matching, i.e. using wildcards on packet



fields. Therefore, for developing an XDP firewall program
that supports various types of signatures, a BPF MAP per
signature type would be required. This would (i) degrade
the total performance due to multiple memory lookups [10],
[29] (proportional to the signature types) and (ii) introduce
downtime since for each BPF Map addition, XDP programs
require reloading.

The DDoS Mitigation app was designed to conform with
the aforementioned XDP limitations. As depicted in Fig.
3, it is based on a user space and a data plane program.
The former manages signatures installation while the latter
performs packet filtering. The user space program receives fil-
tering requests from vAS and/or cAS’s e.g. victim IP/network,
signatures. If there are no signatures, a unique identifier IP
ID is created (Firewall Instances Catalog). Packet signatures
are transformed into XDP programs, i.e. Firewall Instances
(FIs), via appropriate Jinja templates [30] (Firewall Instance
Generation). Each FI parses packet fields and their values
that form the requested signatures. Subsequently, it contains
if-then-else conditions to match and drop malicious packets.
Each generated FI is indexed by a unique File Descriptor (FD)
and can be accessed, updated or deleted dynamically, without
affecting already deployed FIs. After FI instantiation, the user
space program signals the edge router to redirect the network
traffic destined to the victim IP/subnet.

The data plane program receives the redirected packets,
parses their destination IP, and performs a lookup on an
LPM (Longest Prefix Match) TRIE BPF Map; this matches IP
addresses/subnets to their corresponding IP ID. Subsequently,
the IP ID is used as input to a special memory structure BPF
PROG ARRAY, that passes the packet to its corresponding FI.
According to the FIs signatures, malicious packets are blocked
while benign packets are appropriately forwarded. Note that if
the total number of signatures increases significantly, a packet
signature reduction process may be enforced as proposed in
our previous work [10].

C. Collaboration Manager

The Collaboration Manager (CM) is an application that
(i) handles filtering requests for/from collaborators and (ii)
orchestrates the FL training process based on the private
benign and attack traces of individual collaborators, without
exchanges of any sensitive data.

CM employs the BGP protocol to serialize and convey
filtering requests. We needed to overcome the limitation of the
predefined packet fields imposed by BGP Flowspec. To that
end, victim’s CM BGP Speaker initializes a BGP session with
collaborators CM advertising the support of the Content-URI
address family [31], similar to [17]. This allows the advertise-
ment of specialized BGP Update messages that include URIs
pointing to the requested filtering rules (signatures).

Note that, the use of BGP enables our scheme to leverage on
well-established tools, e.g. Resource Public Key Infrastructure
(RPKI), could be extended to check collaborators eligibility
on announcing IP prefixes/addresses of the aforementioned
requested rules.

CM coordinates also the Federated Averaging training pro-
cess. This is an offline procedure between the collaborators
and a neutral third party hosting the Federated Model. CM
retrieves the weights from each training round and publishes
them to the FM via a message broker, i.e. RabbitMQ [32].
Subsequently, it receives the generated weights calculated
as the average of collaborators weights. The proposed mes-
sage broker enables for collaborators authentication, inter-
collaborators private agreements (e.g. sharing accuracy results
on their local datasets) and reliable weights delivery.

Note that typical FL use cases [2], [5] consider as collab-
orators low throughput devices. In our case the size of MLPs
weights that are exchanged between cAS’s have negligible
impact on the high-throughput links that interconnect them.

V. EXPERIMENTAL EVALUATION

We implemented all software applications of the proposed
architecture and deployed them in our laboratory testbed.
The DDoS Detection app was based on PyTorch and PySyft
libraries. The Collaboration Manager was based on Ryu’s SDN
Controller BGP Speaker [33] and RabbitMQ message broker
[32]. The DDoS Mitigation app was deployed as a VNF within
a Virtual Machine (VM); the hypervisor physical machine was
equipped with an Intel i7-2600 CPU and a 10G Netronome
SmartNIC [34] (XDP-enabled). This was directly connected
to another VM with high-speed packet generation capabilities
[35].

To assess the detection accuracy and mitigation performance
of our mechanism, we considered DNS Amplification attacks.
In subsection V-A we analyze the employed DNS datasets. In
subsection V-B we compare the classification accuracy of the
proposed Federated Model to non-collaborative approaches.
In subsection V-C we showcase the packet processing perfor-
mance of our mitigation mechanism.

A. Datasets

Amplification attacks are among the DDoS attacks with the
highest impact on cyber infrastructures. Therefore, we focused
our experiments on a commonly encountered attack vector, the
DNS Amplification attack. Our scheme could be extended to
other DDoS attack vectors, e.g. NTP Amplification attacks
and TCP SYN Floods, by appropriately selecting the feature
set of the machine learning models. However, our evaluation
focuses on assessing the benefits of FL for collaborative DDoS
protection. Therefore, we performed our experiments based on
a single DDoS vector, i.e. DNS Amplification attacks.

As benign traffic, we used DNS traffic traces from a
10G link between the WIDE Japanese backbone and DIX-IE
Internet Exchange [36]. Benign DNS traffic was aggregated
per destination AS based on BGP data [37]. In turn, AS’s
were sorted in descending order based on the total received
packets; dataset B(i) contains benign traffic destined to AS’s
ranked by incoming traffic.

As malicious traffic, we used seven DNS Amplification
attacks contained in the Booters dataset [38], henceforth
referred to as A(i). Attacks in A(1), A(2), A(3), A(6) and



TABLE I
PACKET FEATURES FOR DNS PACKET CLASSIFICATION

Packet Fields (Features)
ip.length dns.flags.checkdisable dns.count.answers

udp.length dns.flags.authoritative dns.count.auth rr
dns.qry.name dns.flags.truncated dns.count.add rr
dns.qry.type dns.flags.recdesired dns.flags.recavail

- dns.flags.authenticated -

A(7) generated type ANY DNS responses. By contrast, in
A(4) and A(5), attackers generated type A DNS responses.
Specifically, A(4) contains responses for a single domain name
that resolved into a very large number of IP addresses. A(5)
corresponds also to a type A attack, in which attackers could
not generate responses with heavy payload.

B. DDoS Detection Accuracy

In this subsection, we evaluate the classification accuracy
of our FL approach and compare it to individual approaches.
Specifically, we considered 7 collaborating AS’s, henceforth
referred to as cAS(i), where i=1. . . 7. Each cAS(i) has access
to its own private traffic mix M(i) that contains attack dataset
A(i) and benign dataset B(i).

We trained each cAS(i) model individually based on dataset
M(i) using an MLP of 13 input neurons, 27 (13x2+1) hidden
and a single output node, as suggested in [39]. MLP weights
were updated based on the Adam [40] algorithm. The features
employed for the MLP (see Table I) are based on the packet
fields presented in our previous work [10]. Note that we
ignored packet fields whose values are (i) identical in attack
and benign packets or (ii) arbitrarily generated in the utilized
datasets (e.g. DNS ID, TCP sequence number). These types
of features (i), (ii) are not able to enhance the classification
accuracy of ML models and can be safely ignored upon
collaborators agreements.

The Federated Model (FM) was trained using the same MLP
architecture with weights conveyed from all collaborators. The
hyperparameters for cAS(i) models and FM were tuned based
on grid search [41], using validation datasets comprising of
30% of datasets M(i).

We evaluated the trained models using as test datasets
A(i) and B(i). The metrics considered in our evaluation were
the True Positive Rate (TPR) and the True Negative Rate
(TNR) achieved on the testing datasets. TPR is defined as the
percentage of attack packets that are classified as malicious,
while TNR is the percentage of benign packets that are
correctly classified as benign.

In Fig. 4, we depict the average TPR and TNR achieved by
each AS(i) and the FM for all datasets, A(1)-A(7) and B(1)-
B(7) accordingly. Note that we excluded A(5) from the average
TPR calculation, since it introduced insignificant malicious
traffic (˜6 Mbps). The FM achieves on average the highest
combination of TPR and TNR amongst individual cAS’s
models, as shown in Fig. 4.

Notably, the individual model of cAS(4) was unable to
achieve a high TPR on the testing dataset; this model was

Fig. 4. Average TPR and TNR of Individual Collaborator Models and
Federated Model on all datasets

trained on data that significantly diverged from the testing
dataset that assembled the individual attack datasets of col-
laborators. However, despite contributing poorly to the col-
laboration scheme, cAS(4) is able to generalize to the testing
dataset using the FL model. Therefore, provided that most
collaborators contribute significantly to the training process,
we observe that our FL scheme enables all collaborating
parties to identify benign and attack packets that as individuals
might misclassify them.

C. Packet Filtering Performance

In this subsection, we assess the packet filtering perfor-
mance of the DDoS Mitigation app. We evaluate its packet
processing performance considering CPU scalability capabili-
ties and the number of supported Firewall Instances (FIs).

We replayed DNS traffic consisting of packets that can
be dropped by a single signature, i.e. dns.qry.type=255 and
dns.qry.name=<Root>, per FI. This signature can block all
the attack traffic contained in datasets A(1), A(2) and A(3);
note that this type of signature can be generated based on the
signature reduction technique that was presented in [10].

We launched concurrent attacks ranging from 10 to 1000
that target different collaborators with accumulated throughput
of 10 Million packets per second (Mpps). To evaluate the
packet processing performance, we counted the number of
packets that were processed and dropped. This enables us to
assess our firewall, as a service offered to collaborating AS’s.
In Fig. 5, we evaluate the scalability of our firewall in terms
of the deployed FIs implemented as a VNF within a VM and
evaluated under a vertical scaling scenario with 1, 2 and 3
CPU cores.

The packet processing performance of our mechanism
scales almost linearly with the number of cores. Such behavior
is also validated in [11], [42]. As expected, increasing the
number of collaborators decreases the overall packet process-
ing rate of our firewall. Specifically, this is reduced linearly
between 10 and 200 FIs and from that point it remains the
same. The enhanced performance for the small number of FIs
is attributed to level one (L1) instruction cache hits [43] while
after a specific number of FIs the L1 instruction cache misses
do not affect the overall performance. These conclusions



Fig. 5. DDoS Mitigation app Scalability

were validated using the perf tool [44] that provides CPU
performance statistics for user-defined time intervals.

In total, our approach can handle successfully up to 1000
concurrent attacks targeting an equal number of collaborators.
These correspond to the number of concurrent blackholed
IP prefixes announced in a large European IX [45]. Thus,
the proposed firewall can serve as a scalable and efficient
mechanism for large-scale attack mitigation in federated cyber
infrastructures.

VI. CONCLUSIONS

In this paper we proposed a collaborative DDoS protection
framework for interconnected cyber infrastructures. Our ap-
proach leveraged on the Federated Learning (FL) paradigm
for collaborative and privacy-aware DDoS detection without
requiring exchanges of sensitive data among collaborating
entities. Attack mitigation was based on VNF-compliant scal-
able and programmable firewalls that were instantiated on-
demand by victims. Specifically, our schema analyzed, within
time windows, packet-based data forming signatures. These
were used as input to supervised Machine Learning models,
trained cooperatively via the Federated Averaging technique.
Suspicious traffic was redirected to programmable (XDP-
based) firewalls to be filtered out. During massive attacks,
our schema enabled victims to raise filtering requests on
collaborating domains to block them, presumably early in
attack paths.

Our framework was evaluated both in terms of detection
accuracy and mitigation performance for typical DNS Am-
plification DDoS attacks, which are considered among the
most devastating DDoS attack vectors. The conducted exper-
iments considered benign and malicious production traffic in
cyber infrastructure environments. The FL approach enabled
collaborators to accurately classify benign and attack packets
improving their individual accuracy. Based on the achieved
packet processing performance, the proposed programmable
firewall provides a scalable filtering mechanism for evolving
federated cyber infrastructures.

As future work, our signature-based approach will be ex-
tended via multi-task learning techniques [23] to concurrently
recognize multiple attack vectors. To reduce training times and
the complexity of the generated Federated Model, we will ex-
plore federated feature selection mechanisms [46]. Moreover,
we plan to incorporate trust-based schemes [47] to improve

performance, robustness and security of FL. Furthermore,
we plan to compare our XDP-based mitigation mechanism
with other data plane programmability techniques, such as
P4 [48] and DPDK [49]. We will extend our framework to
the collaborative and privacy-aware detection and mitigation
of other cyber threats, e.g. for traffic generated by Domain
Generation Algorithms (DGA’s) [50]. Finally, some compo-
nents of our proposed schema may be subject to single point
of failure. These concerns may be mitigated by distributing
the operation of these components, e.g. via leveraging on
Blockchain technology [18].
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