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Abstract—In this paper, we address the network tomography
problems of inferring the multicast routing tree topology and
estimating core link performance characteristics (i.e., loss rate,
jitter) based on end-to-end measurements from a source node to a
set of destination nodes. We extend the agglomerative hierarchical
clustering algorithm that works in a bottom-up manner and
iteratively joins siblings (i.e., nodes with the same parent) by
incorporating the concepts of reciprocal nearest neighbors and
nearest neighbors chains. We employ two alternative ways for
calculating the required distance matrix of terminal nodes. One
based on additive tree metrics and another utilizing several
normalized dissimilarity measures on the binary sequences of
received/lost probes maintained at each node. Finally, we evaluate
the performance of the proposed algorithm in terms of estimation
accuracy and correctness of the inferred logical routing tree over
real network topologies constructed in an open testbed of the
Fed4FIREPlus federation.

Index Terms—Network tomography, agglomerative clustering,
end-to-end measurements, topology inference, link metrics.

I. INTRODUCTION

The proliferation of network architectures and technologies
calls for efficient and accurate monitoring tools, which will
allow for the realization of advanced network management.
Among the various monitoring frameworks, network tomog-
raphy has emerged as one of the lean approaches for efficient
network monitoring, since it mitigates the need for special
purpose cooperation and participation from the various net-
work elements, and reduces the associated traffic overhead
footprint on the total network load. Network tomography refers
to estimating network topology and performance parameters
based on traffic measurements at a limited subset of accessible
network elements by the authority requiring them [1].

Network tomography can be classified into various cate-
gories depending on the type of acquired data and network
parameters of interest [2]. In this paper, we focus on the
inference of the unknown topology and the estimation of
link-level performance parameters, namely loss rate and jitter
(square root of delay variance), based on end-to-end path-level
measurements conducted on the network edge and obtained
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without the cooperation/participation of the internal nodes. The
key contributions of our work are summarized as follows:
• We introduce the use of nearest neighbors (NN) chains
and reciprocal nearest neighbors (RNNs) to the agglomerative
hierarchical clustering method, improving in that way the com-
putational complexity of the bottom-up clustering algorithm
that is widely employed for topology inference and link-level
parameter estimation.
• In addition to the typical distances based on loss and
delay-related tree additive metrics, we explore an alternative
approach that constructs binary sequences at the nodes from
the reception/loss of the sent probes and utilizes several well-
known normalized dissimilarity measures of binary sequences
to express the distance between each pair of nodes.
• We implement a network tomography utility that realizes all
discussed methods for both topology inference and link-level
parameter estimation. We publish1 the source code under a
permissive free software license, accompanied with detailed
documentation.
• We evaluate the performance of the proposed LCA-RNN
algorithm (Algorithm 1) over bare-metal hardware provided
by an open large-scale testbed (Fed4FIREPlus [3]), testing all
possible parametrizations when alternative options are avail-
able (e.g., multiple reduction update formulas, dissimilarity
measures, etc.).

The remainder of this paper is organized as follows. In Sec-
tion II, we briefly overview some related work. We introduce
the network model and the considered inference problem in
Section III, along with two alternative ways of constructing
the required distance matrix. In Section IV, we analyze the
extended NN chain based bottom-up hierarchical clustering al-
gorithm. In Section V, we describe the experimental setup for
the performance evaluation of the proposed algorithm, whereas
the results of several physical routing trees are presented in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

In [4], the authors introduce three types of algorithms that
utilize end-to-end loss measurements in order to infer the

1https://gitlab.com/gkakkavas/lca-rnn-clustering



underlying multicast logical topology, namely a grouping esti-
mator exploiting the monotonicity of loss rates with increasing
path lengths, a maximum-likelihood estimator (MLE), and a
Bayesian estimator. The first approach, which belongs to the
wider class of hierarchical clustering that is also the focus
of our paper, is proven to offer best performance in terms of
accuracy and computational cost.

The RNJ algorithm proposed in [5] is a bottom-up grouping
algorithm recursively joining neighbors in the routing tree. It
can be employed both for the inference of the logical routing
tree topology and the estimation of internal link performance
parameters. It is based on tree additive metrics, and it is the
most relevant to our work, while it can be considered as the
typical agglomerative clustering paradigm.

In [6], the authors employ unicast probing and manage to
reduce significantly the number of pairwise probes needed to
infer the logical routing topology by exploiting a Depth-First-
Search (DFS) ordering of the end-hosts. The BHC clustering
algorithm presented in [7] identifies the multicast routing
topology based on the Hamming distances between all pairs of
sequences of received and lost probes maintained at each node,
while also incorporating hop-count information. However,
such information is not always available in practice, thus
limiting the applicability of the algorithm.

III. NETWORK MODEL AND PROBLEM FORMULATION

Let G = (V, E) denote the topology of the network that
consists of end hosts, internal switches and routers (node set
V), and the communication links that join them (link set E).
Assuming that during the measurement period the underlying
routing algorithm determines a unique path from a source to
each destination that is reachable from it, the physical routing
topology from a source node to a set of destination nodes is
a directed tree called physical routing tree. From the physical
routing tree, we can derive the logical routing tree which is
defined by the branching points, i.e., internal nodes with two
or more outgoing links. Internal nodes where no branching of
traffic occurs do not appear in the logical tree. A logical link
may comprise more than one consecutive physical links. Each
node in the logical tree has at least two children, except for the
root (which has one) and the leaves (which have none). Thus,
the degree of an internal node on the logical routing tree is at
least three. If all internal nodes have exactly two children, the
tree is called binary.

Assume a source node s and the set of destination nodes D
that are reachable from s. The logical routing tree from s to
nodes in D with node set V ⊆ V and link set E ⊆ E is denoted
by T (s,D) = (V,E). Every node k ∈ V \ {s} has a parent
f(k) ∈ V such that link ek ≡ (f(k), k) ∈ E. Let c(k) = {j ∈
V : f(j) = k} be the set of children of node k ∈ V . Then,
|c(s)| = 1, c(i) = ∅,∀i ∈ D and |c(i)| ≥ 2,∀i ∈ V \ {s}∪D.
The path p(i, j) denotes the sequence of links that connect
node j to i on the logical routing tree. Finally, each link e ∈ E
is associated with a performance parameter θe. The network
tomography problem under consideration involves using end-
to-end measurements taken at the terminal nodes (i.e., nodes

in {s} ∪ D) to infer the topology of the logical routing tree
and the parameters θe, e ∈ E associated with its links.

The state of each link on the logical routing tree is rep-
resented by the set of link state variables Ze, ∀e ∈ E,
Ze ∈ Z , whose distribution is parameterized by the respective
θe parameter. Similarly, a set of outcome variables is defined
for all nodes of the tree. More precisely, for each node k ∈ V ,
Xk takes value in set X and denotes the (random) outcome at
node k. The outcome at node k is determined by the outcome
at its parent node and the state of the link that connects them.

An additive metric on T (s,D) associates each link e ∈ E
with a finite, strictly positive link length d(e), whereas the
distance d(i, j) between any pair of nodes, i, j ∈ V , is
expressed as the summation of the link lengths along the path
p(i, j) that connects them. The topology and the link lengths
of a tree T (s,D) are uniquely determined by the distances
D = {d(i, j) : i, j ∈ {s} ∪ D} between the terminal nodes
under any additive metric on the tree [8]. Furthermore, if
there is an one-to-one mapping between the link performance
parameters θe and link lengths d(e), e ∈ E, then the former
can be recovered from the latter. However, in actual network
inference problems, we only have end-to-end (from source s
to destination nodes in D) measurements taken at the terminal
nodes, based on which the required pairwise distances are
estimated. Subsequently, we can use the estimated distances
between the terminal nodes to infer the logical routing tree
topology and the link performance parameters.

A. Multicast-based Additive Tree Metrics

Under the assumption of independence and stationarity of
link states during the measurement period, we construct the
following additive tree metrics:
1) Loss rate: the negative logarithm of the complement of the
packet loss rate is additive. In greater detail, the link state
variable Ze is a Bernoulli random variable that takes value 1
(or 0) with probability θe (or 1−θe) if the probe travels through
(or is lost on) link e. Therefore, θe expresses the success rate
of link e, whereas 1 − θe denotes the respective loss rate.
Similarly, the outcome variable Xk is a Bernoulli random
variable that takes value 1, if the probe reaches node k, and
value 0 otherwise. For the source s generating the probes, we
assume Xs ≡ 1 and P (Xs = 1) = 1. For the rest nodes, i.e.,
∀k ∈ V \ {s}, we have:

Xk = Xf(k) · Zek =
∏

e∈p(s,k)

Ze, and

P (Xk = 1) =
∏

e∈p(s,k)

P (Ze = 1) =
∏

e∈p(s,k)

θe.

Consequently, we can construct an additive tree metric with
link length d(e) = −log(θe), ∀e ∈ E, where θe denotes the
complement of the loss rate (i.e., the success rate) of link e.
2) Delay variance: the square of the jitter is additive (when
jitter is defined as the standard deviation of latency), since the
variance of a sum of independent random variables is the sum
of their variances. More precisely, the link state variable Ze



is a random variable that expresses the random queuing delay
of link e. The performance parameter associated with link e
is defined as the second moment of the respective link state
variable, i.e., θe = Var(Ze). The outcome variable Xk denotes
the cumulative end-to-end queuing delay that is experienced
by the probe until reaching node k. Clearly, for the source
s it is Xs ≡ 0 and Var (Xs) = 0. For the rest nodes, i.e.,
∀k ∈ V \ {s}, we have:

Xk = Xf(k) + Zek =
∑

e∈p(s,k)

Ze, and

Var (Xk) = Var

( ∑
e∈p(s,k)

Ze

)
=

∑
e∈p(s,k)

Var (Ze) =
∑

e∈p(s,k)

θe.

Therefore, we can construct an additive tree metric with link
length d(e) = θe = Var(Ze), ∀e ∈ E, where Var (Ze) is the
square of jitter of link e.

B. Additive Tree Metric Distance Matrix Estimation

The joint distributions of the outcome variables at the
terminal nodes (i.e., nodes {s} ∪ D) enable us to calculate
the respective pairwise distances and form the distance matrix
under the employed additive tree metric, which is necessary for
inferring the logical routing topology and the corresponding
link performance parameters. However, in practice we do not
know the actual distributions. Instead, we have end-to-end
measurements between the source and each of the destination
nodes, which we must leverage in order to estimate the
required pairwise distances. In particular, assuming source s
sends n probes to the nodes in the destination set D, only the
outcome variables at the terminal nodes can be measured and
observed

(
X

(t)
k : k ∈ {s} ∪D and t = 1, 2, · · · , n

)
. Then,

depending on the employed additive metric we have:
1) Loss rate: the pairwise distances between the terminal
nodes can be calculated as:

d(s, i) = log

(
1

P (Xi = 1)

)
= − log (P (Xi = 1)) , ∀i ∈ D,

and d(i, j) = log

(
P (Xi = 1) · P (Xj = 1)

[P (XiXj = 1)]
2

)
, ∀i, j ∈ D.

For every probe t = 1, 2, · · · , n the corresponding value of
the outcome variable at destination node k, i.e, X(t)

k , is equal
to 1, if the probe reaches that specific node and equal to 0,
if it gets lost somewhere along the way. Given that for a
Bernoulli random variable, the maximum likelihood estimator
(MLE) of the probability that it takes value 1 is equal to the
sample mean, we can construct the following estimators for
the pairwise distances between the terminal nodes:

d̂(s, i) = log
(

1

Xi

)
= −log

(
Xi

)
, ∀i ∈ D,

and d̂(i, j) = log

(
Xi ·Xj

XiXj
2

)
, ∀i, j ∈ D,

where Xi =
1

n

n∑
t=1

X
(t)
i and XiXj =

1

n

n∑
t=1

X
(t)
i X

(t)
j .

2) Delay variance: the pairwise distances between the termi-
nal nodes can be calculated as:

d(s, i) = Var (Xi) , ∀i ∈ D, and

d(i, j) = Var (Xi) + Var (Xj)− 2 · Cov (Xi, Xj) .

Using the unbiased sample variance (with lost packets ig-
nored), we can construct the following estimators for the
pairwise distances between the terminal nodes:

d̂(s, i) = V̂ar (Xi) , ∀i ∈ D, and

d̂(i, j) = V̂ar (Xi) + V̂ar (Xj)− 2Ĉov (Xi, Xj) ,∀i, j ∈ D,

where V̂ar (Xi) =
1

n− 1

n∑
t=1

(
X

(t)
i −Xi

)2
, and

Ĉov (Xi, Xj) =
1

n− 1

n∑
t=1

(
X

(t)
i −Xi

)(
X

(t)
j −Xj

)
.

C. Multicast-based Binary Sequences Dissimilarities

An alternative approach for constructing the distance ma-
trix under the aforementioned loss model involves a slight
modification of the outcome variables and the use of binary
sequences. In particular, assuming source s sends n probes to
the nodes in the destination set D, we maintain the sequences
Sk = {s(t)k , 1 ≤ t ≤ n}, ∀k ∈ D, with s

(t)
k = 1 if the t-th

probe has reached node k and s(t)k = 0 otherwise. By conven-
tion, we consider that all probes “reach” the source s, therefore
all n elements of sequence Ss are equal to 1. Subsequently,
we can calculate the pairwise distances between the terminal
nodes and form the respective distance matrix by measuring
the dissimilarity of the corresponding binary sequences. More
specifically, we employ the following normalized (with values
in the range [0, 1]) dissimilarity measures [9], [10]:

• Jaccard-Needham

dJN =
C10 + C01

C11 + C01 + C10
, (1)

• Hamming

dH =
C01 + C10

n
, (2)

• Dice

dD =
C10 + C01

2C11 + C01 + C10
, (3)

• Rogers-Tanimoto

dRT =
2C10 + 2C01

C11 + C00 + 2C10 + 2C01
, (4)

where Cij , i, j ∈ {0, 1} is the number of occurrences of
matches with i in the first sequence and j in the second
sequence at the corresponding positions.



IV. LOGICAL ROUTING TREE AND LINK PARAMETERS
INFERENCE

In order to reconstruct the binary logical routing tree from
the (estimated) pairwise distances of terminal nodes, we will
employ an agglomerative hierarchical clustering approach that
begins with a set including all the destination nodes in D and
each destination node in its own cluster. In each step, two
neighboring nodes are joined to one cluster and are replaced
in the set by a new node designated as their parent. Clustering
continues recursively on this reduced set, until there is only
one node left in the set, which will be the child of the root s.

The various agglomerative clustering algorithms are differ-
entiated based on two important components of the previous
procedure: the neighbor selection criterion according to which
the nodes are joined, and the reduction update formula used
for the calculation of the distances in the reduced set (i.e., the
distances from the newly generated parent to the rest nodes).

A. Agglomerative Hierarchical Clustering for Additive Tree
Metrics

Given the source node s, let LCA(i, j), ∀i, j ∈ D denote
the lowest common ancestor of the nodes i and j in the logical
routing tree, which is the node that is located the farthest
from the root and has both i and j as descendants (where
we define each node to be a descendant of itself). Then,
`(i, j) = d(s,LCA(i, j)) expresses the depth of the lowest
common ancestor of i and j, which can be viewed as the
shared path length from s to i and j, and `(i, i) = d(s, i)
denotes the path length from s to i. Under any additive
tree metric, there is an one-to-one mapping between pairwise
distances and lowest common ancestor depths of terminal
nodes as defined by:

`(i, j) =
1

2
[d(s, i) + d(s, j)− d(i, j)] , ∀i, j ∈ D. (5)

Therefore, given the set of (estimated) pairwise distances
D = {d(i, j) : i, j ∈ {s} ∪ D} of terminal nodes, we
can construct the (symmetric) matrix of LCA depths L =
[`(i, j)] , ∀i, j ∈ D. In [5], the neighbor selection criterion is
the maximization of the LCA depth, that is nodes i and j with
the largest `(i, j) are considered siblings. However, it is not
necessary to find the (computationally expensive) pair of nodes
with the deepest lowest common ancestor (i.e, largest LCA
depth). Instead, nodes i and j can be considered siblings if they
are the nearest neighbor of each other, in which case they are
called mutual or reciprocal nearest neighbors (RNNs). In the
context of the LCA depths matrix, this means that the selected
pair i, j should correspond to a maximal off-diagonal entry in
rows i, j, but not necessarily in the entire matrix, i.e., nodes i
and j are siblings that can be joined and substituted by parent
v if and only if ∀k 6= i, j, `(i, j) ≥ `(i, k), `(j, k). Such pairs
of RNNs can be found efficiently based on the construction
of nearest neighbors (NN) chains [11], [12].

More precisely, a NN chain consists of an (arbitrarily
chosen) initial node i, followed by its nearest neighbor in terms
of LCA, meaning node j such that `(i, j) = maxk 6=i `(i, k)

(or equivalently the node that corresponds to the column index
of the maximal off-diagonal value of the row i in matrix L),
followed by the nearest neighbor of this second node and so
on, until it eventually gets complete by terminating at a pair
of nodes that are nearest neighbors of each other (reciprocal
nearest neighbors). The latter are chosen to be merged as soon
as they are found and they are about to be replaced by a
newly generated parent node u. Provided that the reduction
is convex, i.e., ∀k 6= u, min{`(i, k), `(j, k)} ≤ `(u, k) ≤
max{`(i, k), `(j, k)}, Bruynooghe’s reducibility property [11]
is preserved and the remaining nodes after the removal of i
and j continue to form an incomplete NN chain (meaning
that consecutive pairs in the chain remain nearest neighbors)
that needs to be extended until the termination condition is
met again. Hence, the largest part of the chain can be reused
along subsequent iterations and can be extended starting from
the node preceding the last found RNNs or from an arbitrary
node if those RNNs happened to be the only two elements
of the chain. By merging RNNs as they appear in the NN
chain, nodes are merged in a different order than that of greedy
methods that always join the overall closest pair. However, the
generated hierarchy results to be the same.

The NN chain method consists of a sequence of extending
operations, some of which lead to termination, whereas the
rest lead to the extension of the chain by one additional
node. Each such operation requires the computation of a
maximal row element of matrix L, which can be done in linear
time. Thus, the overall time complexity of constructing and
maintaining the complete NN chain is determined by the total
number of extending operations that are performed throughout
the execution of the algorithm. Assuming n nodes in the
destination set D, n − 1 operations lead to termination (we
must find and remove from the chain n − 1 pairs of RNNs,
one in each iteration). Furthermore, since in each iteration only
two nodes are removed from the chain and by the end of the
algorithm the chain is reduced to a single element, the total
number of nodes that ever get added to the chain cannot be
more than 2n−2. Consequently, the total number of extending
operations cannot be more than 3n − 3, thus yielding a total
running time of O(n2).

Regarding the reduction update formula, we consider two
alternative options. The first is the so-called mid-point re-
duction that is also employed by the Rooted Neighbor-
Joining (RNJ) algorithm presented in [5]. According to this
approach `(u, k) = 1

2 [`(i, k) + `(j, k)] , ∀k ∈ D : k 6= u,
where u is the newly generated parent of the nodes i and
j that are being joined. The second option is the so-called
maximal-value reduction expressed by the formula `(u, k) =
max {`(i, k), `(j, k)}.

Taking into account all of the above, the logical tree
topology inference algorithm (henceforth denoted LCA-RNN
algorithm) is presented in Algorithm 1. Assuming there are
n destination nodes (i.e., |D| = n), the proposed algorithm
terminates after n−1 iterations. In each iteration, the reduction
stage requires O(n) operations, thus resulting to a total O(n2).
Furthermore, the RNN pair selections can be achieved by



constructing and maintaining a complete NN chain throughout
the execution of the algorithm in O(n2) time as previously
explained. Therefore, the overall time complexity of the al-
gorithm has a bound of O(n2) (for comparison, the RNJ [5]
algorithm has a complexity of O(n2logn)).

Algorithm 1 LCA-RNN Algorithm
Input: Source s, destinations D, distances d(i, j) : i, j ∈ {s} ∪D.

1: Initialization
Set V = {s} ∪D and E = ∅.

2: LCA depths matrix deduction:
Compute the |D| × |D| matrix of LCA depths L =
[`(i, j)] , ∀i, j ∈ D where:

`(i, j) =
d(s, i) + d(s, j)− d(i, j)

2
, ∀i, j ∈ D,

and `(i, i) = d(s, i), ∀i ∈ D.

3: Neighbor selection:
Find i′, j′ ∈ D that are reciprocal nearest neighbors by con-
structing the complete NN chain on matrix L.

4: Reduction:
Create node u as the parent of i′ and j′.
Reduce (symmetric) matrix L by deleting row and column j′ and
replacing row i′ with a new row u with values:

`(u, k) =
`(i′, k) + `(j′, k)

2
or

`(u, k) = max
{
`(i′, k), `(j′, k)

}
, ∀k ∈ D, k 6= u, i′, j′,

and `(u, u) = `(i′, j′).

5: Tree reconstruction:
Remove nodes i′ and j′ from set D:

D = D \ {i′, j′}.

Add parent node u to the set of tree nodes V and to set D:

V = V ∪ {u} and D = D ∪ {u}.

Add the two new edges to set E:

E = E ∪ {(u, i′), (u, j′)}.

Connect i′ and j′ to u with link lengths:

d(u, i′) = max{0, `(i′, i′)− `(i′, j′)},

d(u, j′) = max{0, `(j′, j′)− `(i′, j′)}.

6: Stopping condition:
If |D| = 1 (or equivalently L = [`]) then for the node k ∈ D,
set d(s, k) = 0 and E = E ∪ (s, k) (i.e., connect the remaining
node with source s) else go to Step 3.

Output: Tree T = (V,E) and link lengths d(e), ∀e ∈ E.

B. Agglomerative Hierarchical Clustering for Binary Se-
quences

In the case of the binary sequences based loss model
presented in Section III-C, the LCA-RNN algorithm is slightly
modified. Given that the binary sequences of the internal
nodes can be calculated from the sequences maintained at the
terminal nodes, there is no need of employing a reduction

update formula at Step 4 and the lengths of the new edges at
Step 5 can be calculated directly. More precisely, we assume
that a specific probe reaches an internal node, if at least one
of the node’s children also receives it successfully. Therefore,
at each iteration the binary sequence of the newly constructed
parent node u can be calculated by applying the element-wise
logical-OR operation to the respective sequences of the chosen
reciprocal nearest neighbors i′ and j′ that are considered its
children: Su = Si′ ∨ Sj′ .

After that, we can employ one of the dissimilarity mea-
sures (1) to (4) to calculate the pairwise distances between
u and the rest nodes in set {s} ∪ D (i.e., d(u, k), ∀k ∈
{s} ∪ D, k 6= u) and update the matrix of LCA depths by
applying (5). We note that under this model there is no one-
to-one mapping between the link performance parameters θe
and link lengths d(e), e ∈ E. As a consequence, we can
only employ the LCA-RNN algorithm to infer the underlying
topology and not the link characteristics.

C. Extension to General Trees

Since an RNN pair is chosen as a pair of siblings (i.e.,
nodes that have the same parent) at every iteration, the
proposed algorithm will result in a binary inferred tree. Thus,
the application of the LCA-RNN algorithm to an arbitrary
topology produces a binary tree that contains “imaginary”
edges of zero-length. A straightforward way to extend the
inferred topology to general trees is to add a post-processing
pruning stage, during which the nodes that are connected with
zero-length edges (excluding the edge between the root and
its single child that is of zero-length by design) are joined.

Fig. 1. Binary tree pruning.

Fig. 1 illustrates this process. Nodes k and w of the
inferred binary tree are to be merged in order to recreate
node i. It should be noted that the lengths of the remaining
edges involved are estimated correctly and the only correction
needed is the update of the respective end with the new joined
node. In practice, because of accumulated errors introduced
during the measurement process and the estimation of the
involved distances, we employ a threshold τ > 0 and prune all
the links ek for which d̂(ek) ≤ τ (or equivalently join nodes
k and f(k) at the ends of the edge).

V. EXPERIMENTAL SETUP

The effectiveness of the proposed approach is demonstrated
and quantitatively evaluated by exploiting the capabilities
of the Virtual Wall testbed of ILAB.T [13] (part of the



Fed4FIREPlus federation [3]). More precisely, the provided
hardware was employed for the construction of several phys-
ical routing tree topologies (as described in Section III) with
Ubuntu 18.04 LTS 64-bit operating system running directly
on the nodes. The nodes acting as routers required specialized
routing software to enable networking protocols. To that end,
we installed the Quagga network routing software suite [14]
and leveraged its Open Shortest Path First (OSPFv2) and
Protocol Independent Multicast for Source-specific Multicast
(PIM-SSM) implementations. Network impairment (i.e., delay
and loss) on links between nodes was implemented on soft-
ware, using the netem kernel module that provides network
emulation functionality and the tc utility that configures the
kernel structures required to support traffic control [15].

(a) Real physical routing tree (b) Inferred logical routing
tree

Fig. 2. Binary Tree Topology Inference.

TABLE I
BINARY TREE LINK PERFORMANCE PARAMETER ESTIMATION

Loss Rate (%) Jitter (ms)
# Pr. 2k 5k 10k 2k 5k 10k
e tc Estimation tc Estimation

(7,1) 20 19.88 19.67 19.34 200 200.26 203.16 199.27
(7,6) 13 11.87 12.24 12.90 150 152.39 150.72 151.10
(6,2) 10 10.58 10.34 9.63 100 101.27 98.62 101.02
(6,5) 5 5.15 5.21 4.73 50 48.38 49.9 48.88
(5,3) 7 6.63 6.94 7.11 20 24.30 23.67 23.71
(5,4) 15 14.33 15.49 14.48 40 37.79 37.64 37.96

Active end-to-end probing was carried out using the iPerf
network traffic tool [16]. In particular, the destination nodes
(i.e., leaves of the tree) joined the same multicast group
(e.g., 239.1.2.3) by operating the appropriate iPerf servers
and the source (i.e., root of the tree) generated UDP traffic
to that group via a suitable iPerf client. The target probing
bandwidth was set to 1 Mbit/s and the measurement period
was selected as 25s, 60s or 120s, thus resulting in 2k, 5k
or 10k sent datagrams respectively. For the purpose of our
experiments, each datagram was assumed a probe packet.
In order to obtain the desired end-to-end measurements, the
aforementioned probes were captured at the outgoing interface
of the source and at the incoming interfaces of the destination
nodes via tcpdump and libpcap [17]. The description of the
contents of the packets at the network interfaces that matched

the provided filter expression (in our experiments, udp and port
5001 and dst 239.1.2.3) preceded by the corresponding time-
stamps expressed in hours, minutes, seconds, and fractions of
a second since midnight were saved to text files and were
later processed by a Python script that estimated the distances
between the terminal nodes as described in Subsection III-B.

It should be noted that whenever the kernel needs to send a
packet to an interface, it en-queues it to the queuing discipline
that exists between the protocol output and the driver queue of
the associated NIC. Since network impairment is achieved by
configuring that queuing discipine using tc, and end-to-end
measurements depend on tcpdump capturing probe packets
at the appropriate NICs, in order to obtain accurate starting
measurements for the end-to-end paths between the source
and each destination node, we leverage the fact that in the
assumed network model the source always has a single child
and we never impair that specific link.

VI. RESULTS AND DISCUSSION

We have developed in Python 3.7.4 a fully functional
command-line network tomography utility that implements
the presented algorithm with all alternative options, namely
loss rate, delay variance and loss sequence models, mid-point
and maximal-value reduction formulas, and the four binary
sequences dissimilarity measures. The utility takes as input
the tcpdump files of the source and the destination nodes and
outputs the inferred logical routing tree topology, along with
the link performance parameters, if applicable.

(a) Real physical routing tree (b) Inferred logical routing tree

Fig. 3. General Tree Topology Inference.

TABLE II
GENERAL TREE LINK PERFORMANCE PARAMETER ESTIMATION

Loss Rate (%) Jitter (ms)
# Pr. 2k 5k 10k 2k 5k 10k
e tc Estimation tc Estimation

(11,10) 10 10.37 9.75 9.89 50 45.3 50.6 48.9
(11,1) 15 14.50 15.17 14.14 220 220.4 223.6 217.8
(10,2) 13 13.38 13.31 13.08 150 150.4 149.9 150.5
(10,3) 20 19.85 19.92 19.15 80 79.4 79.9 80.9
(10,8) 8 7.50 7.87 7.80 110 108.6 110.8 107.8
(8,4) 15 15.99 14.72 14.34 70 66.8 69.6 69.9
(8,5) 11 10.36 11.64 11.55 50 49.6 49.1 51.4
(8,6) 13 11.85 13.32 13.16 60 60.4 60.2 58.6



Fig. 2a illustrates the simple topology used for testing. It
is verified that the logical routing tree, which in this case
coincides with the physical routing tree, is inferred correctly.
Furthermore, Table I presents in fine-grained detail the estima-
tions of the link performance parameters when the mid-point
reduction formula is employed. Finally, Fig. 3 and Table II
demonstrate similar results for the general tree extension.

Tables III and IV provide an overview of the accuracy of
the link characteristics estimation for several physical routing
trees, both binary and general. More precisely, they provide
the Mean Square Error (MSE) statistic for every conducted
experimental scenario, which is defined as:

MSE =
1

|E| − 1

∑
e∈E\(s,c(s))

(ye − ŷe)2 ,

where T (s,D) = (V,E) is the logical routing tree, ye is
the loss rate (or the jitter) of link e and the edge between
the source and its unique child has been excluded from the
calculation, given that it is never impaired by design.

TABLE III
AGGREGATED EXPERIMENTAL RESULTS FOR LOSS RATE (%)

Physical Mid-point Maximal Val.
Routing Tree 2k 5k 10k 2k 5k 10k

Type # Nds Mean Square Error

Bin. 8 0.3751 0.1804 0.1569 0.3472 0.1379 0.1649
Bin. 16 1.3856 0.3419 0.1387 3.2834 0.4841 0.1723
Bin. 24 1.2981 0.2588 0.1571 1.6536 0.3185 0.2439
Bin. 32 1.4352 0.6979 0.1935 2.4624 0.9732 0.3123
Gen. 10 0.4392 0.101 0.287 0.6063 0.1006 0.4088
Gen. 20 0.7687 0.2856 0.1007 0.9362 0.4861 0.1325
Gen. 30 0.5523 0.2659 0.2226 0.7902 0.2999 0.2137
Gen. 40 1.3112 0.4353 0.2622 1.6839 0.7002 0.4794

TABLE IV
AGGREGATED EXPERIMENTAL RESULTS FOR JITTER (MS)

Physical Mid-point Maximal Val.
Routing Tree 2k 5k 10k 2k 5k 10k

Type # Nds Mean Square Error

Bin. 8 5.564 5.24 3.657 6.17 5.499 3.899
Bin. 16 51.2 22.35 11.47 57.038 22.474 16.039
Bin. 24 58.438 22.057 12.198 79.298 22.295 12.079
Bin. 32 122.269 46.111 19.361 213.994 102.907 42.716
Gen. 10 4.421 1.851 2.03 13.22 2.417 2.393
Gen. 20 33.485 22.296 9.696 86.869 34.617 14.872
Gen. 30 46.75 27.684 11.575 164.415 70.508 26.968
Gen. 40 105.291 26.493 18.382 196.975 59.68 46.198

As it can be observed, the use of the mid-point reduc-
tion update formula leads consistently to better estimations.
Furthermore, as expected, the accuracy of the estimations is
improved as the number of the employed probes increases.
However, in the case of loss rates, the differences in the
produced errors are small enough to avoid prohibiting the
use of less probes. Regarding the reported errors, we should
note that during the calculations we consider as true values
(i.e., ye) the arguments provided to the tc command, which

may differ from the actual realized values, especially for jitter
that is susceptible to various limitations, such as the clock
resolution of the kernel and the employed distribution tables.
Finally, it should be pointed out that in the case of general
trees, the logical routing tree topology is inferred correctly
in all of the conducted experiments after a suitable threshold
has been identified, both for the additive tree metrics and the
binary sequences based distances. The binary routing trees are
also reconstructed correctly.

VII. CONCLUSION

In this paper, we addressed the problem of inferring the
multicast routing tree and estimating the internal link perfor-
mance parameters of loss rate and jitter based on end-to-end
measurements from a source to a set of destination nodes.
We extended the traditional bottom-up hierarchical clustering
algorithm by incorporating the concepts of reciprocal nearest
neighbors and nearest neighbors chain. We devised two alter-
native ways of constructing the required matrix of pairwise
distances between terminal nodes. Finally, we evaluated the
performance and accuracy of the proposed algorithm with
experiments conducted on a Fed4FIREPlus testbed.
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