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Abstract

Detection of Distributed Denial of Service attacks should ideally take
place near their sources, at edge networks, where countermeasures are
most effective. DDoS detection by monitoring an over-provisioned back-
bone link either near the source or the victim is challenging because con-
gestion isn’t the identifying anomaly signature. Most research efforts try
to identify a single detection metric that can reliably detect DDoS attacks.
On the contrary, we use multiple metrics to successfully detect flooding
attacks and combine them with an Artificial Neural Network (ANN).
We explore the DDoS detection ability of Multi-Layer Perceptrons (MLP)
as classifiers we can teach by example. The inputs of the MLP are metrics
coming from different types of passive measurements that are available to-
day to network administrators. We use these metrics to feed our MLP,
train it and evaluate its performance in terms of ’false positive’ and ’true
positive’ rates in the face of new data. Our analysis is based on data from
several experiments that were conducted with the use of common DDoS
tools in the production network of a university network. Beyond detecting
plain flooding attacks we show that the MLP is capable of classifying the
state of the monitored edge network as ”DDoS source”, ”DDoS victim”
or ”normal”. This way we show that an edge network can use a single
mechanism to protect itself from incoming DDoS attacks and at the same
time protect the rest of the network from outgoing attacks.

1 Introduction

It seems that we are witnessing a tremendous growth of Internet threats. The
emergence of multiple worms[1] and viruses that are propagating by exploiting
the numerous vulnerabilities that are discovered day by day, transforms poorly
administered computers into a powerful army in the electronic battlefield. The
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compromised hosts can be remotely controlled to perform various malicious ac-
tivities like Spam forwarding [2], hosting illegal web sites or Distributed Denial
of Service attacks 1. Malicious users that have under their control a large num-
ber of compromised hosts are able to launch packet floods towards a victim host
or a router with a single command. These packet floods may aim at bandwidth
starvation, at overloading a system’s IP stack or a router’s flow based switching
module and are able to make the victim devices unreachable - denying thus
service to legitimate users.
The detection of Distributed Denial of Service attacks is vital for the secu-
rity management of edge networks, especially of university networks and ADSL
providers. Poorly administered workstations and servers of academic networks
and non sophisticated users’ home computers become the main sources of such
attacks. Detection of DDoS attacks near their sources is the most effective ap-
proach that has been slightly explored [3],[4]. However, detection is hard even
near the victim -destination network- , especially if we monitor non-congested
links, which is the case in a overprovisioned ISP backbone. In this case link
saturation can’t provide us with an anomaly signature. In the same time it
would be economically questionable to expect ISP’s to perform DDoS detection
on many, small and highly utilized customer links and not just at a few points
of the over-provisioned backbone.
Given the current technology constraints, the research community has failed
to offer to network administrators reliable and feasible detection methods. The
problem is that our sensors have to cope with high data rates which impose con-
straints on the detection algorithm’s complexity. This way, complex processing
techniques like power spectral density estimation [5], clustering algorithms [6]
or wavelet analysis [7] are promising but not readily available since they are
based on hard to measure metrics (at least in real time) and they involve high
processing overhead.
Moreover, most detection approaches focus on single detection metrics with the
notable exceptions of [8],[9]. In contrast to the approaches mentioned before,
we explore the detection ability of an ANN using several detection metrics that
are based on passive measurements. Our detection metrics were measured in
a production network using tools and methods available today to network op-
erators in contrast with unrealistic approaches that for example keep detailed
per flow statistics. We use a Multilayer Perceptron as a data fusion algorithm
to combine these heuristics. We use a machine learning approach in order to
avoid magic numbers and site-dependent thresholds that would demand great
investment in terms of installation and customization. As a MLP can be taught
by example and fuse together several detection metrics it is a suitable basis for a
detection mechanism. Our analysis is based on UDP flooding experiments and
traffic measurements on a link that can sustain packet floods without severe
congestion. This made the detection of traffic anomalies challenging and in the
same time allowed us to conduct DDoS attacks without causing any harm to

1more accurately packet flooding attacks in contrast to logical DoS attacks that exploit
certain OS or application vulnerabilities
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the legitimate network users. We test our detection system on real and non
synthetic traffic unlike other approaches that when operating in a production
network might generate an enormous size of false alarms due to inaccurate mod-
eling of Internet traffic.

The paper is structured as follows: we begin in section 2 with a description of
our detection system and continue on section 2.1 with a brief introduction to the
available passive measurement techniques and the features that were selected
as an input to the MLP. In section 3, we present the topology and the traffic
characteristics of our experimentation platform, an academic-network ISP. In
section 4 we continue with the evaluation of our detection system in terms of
learning and generalizing and discuss some potential improvements. We con-
clude in section 5 summarizing the main results of our approach.

2 Detection System Architecture

UR
IR

FT10
FR
FP1

IW 1

b 1

LW
2

b 2

N
et

w
or

k
m

ea
su

re
m

en
ts

Feed forward Neural Network (MLP)

[0,1]
Output

Class

{Attack, Normal}

or
{Source , Victim, Normal}

11

a1=tansig(IW 1 p+b 1)

p

Nx1

HxN

Hx1

H

a1

a2

a2=tansig(LW 2 a1+b 2)

Hx1

M

Mx1

MxH

Mx1

Hidden Layer (H units)Input Layer Output Layer

N

Figure 1: The detection system’s architecture

One of the main points of our contribution is addressing the problem of
UDP attack detection as a typical classification problem. Using the network
state as input, a classifier can make an assessment whether it is a normal or
an attack situation. For such classification problems neural networks are a
promising solving technique. Neural networks were also used by the authors of
[10] but in order to perform non-linear time series prediction and to detect UDP
attacks as a large deviation from the predicted traffic value. We argue that the
difficulty in detecting DDoS attacks rises from the fact that a reliable decision
cannot be made based on a single metric but we should use a combination of
several metrics’ values. In the same time prediction of future values of network
characteristics might be more difficult than our classification problem.
To address the classification problem we chose to follow a supervised learning
approach. Using a carefully chosen set of network statistics as an input signal
we train a multilayer (MLP) feed forward network to classify normal and attack
states. The neural network configuration is very simple as it has only one hidden
layer and will be analyzed in section 2.2. Figure 1 shows the architecture of the
detection system that is presented in this section.

3



2.1 Feature set selection

To successfully detect the true network state we had to choose which features
to feed into the classifier. We will present the metrics used, grouped by the
measurement methodology. Before we start we would like to stress the fact
that these methods are used today by network administrators to monitor their
networks and show that our approach is realistic and feasible. In contrast to
other approaches that keep per flow or per IP address state, our statistics are
high-level (easy to measure and store) but can still indicate attack patterns.

2.1.1 Packet capturing

The most powerful passive measurement method is through direct packet cap-
turing. The main problem of this method is that the monitor has to cope with
very high link speeds that impose constraints on the complexity of the statistics
kept. Specialized hardware like network processors [14] might help keeping up
with increasing data transfer rates in the future.
Our packet capturing infrastructure consists of commodity hardware (Intel P4
2.4GHz with an Intel Gig. Ethernet card) and open-source software. We have
developed a custom preprocessor plugin for the popular open source IDS Snort
[15] that produces traffic statistics based on captured packet data (libpcap for-
mat). The statistics kept were chosen to be simple so that it would be feasible to
run the plugin at high wire-speeds with minimum packet drops (< 0.1%). Using
these tools we are able to collect data of the incoming and outgoing UDP and
ICMP packet rates and their corresponding share of the link utilization sampled
in regular time intervals. The time granularity is set to 30sec so that we can
detect even short-living anomalies. All the data produced by our plugin are
stored in round robin databases with the use of the RRDtool [16]. The metrics
that were used in the input vector are:

• UDP attacks are mainly bandwidth consumption attacks and as these
traffic types generally utilize small amounts of bandwidth, sudden changes
in the transferred UDP bytes/sec are good indications of attacks. An im-
provement over this simple approach is the UDP ratio : UR = incoming bit/sec

outgoing bit/sec

The intuition behind this metric is that although there isn’t a clear sym-
metry in the UDP traffic as in the case of TCP, there is still a fairly stable
site dependant behavior (ratio value) depending on the presence of DNS,
NFS, streaming servers etc.

• The ICMP ratio IR = outgoing bit/sec
incoming bit/sec serves also as an indication of an

UDP flood because most of the times a reverse ICMP stream is generated
during a UDP attack if the packets have a valid checksum.

2.1.2 Netflow data analysis

A flow is defined as a unique set of the following 5 characteristics <protocol,
source IP, source port, destination IP, destination port> and makes a higher
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level description of a traffic stream. This information that is kept by the routers
is much smaller in size than whole packets but in the same time loses some
additional information like TCP header flags. Another characteristic of this
measurement type is that it is near real-time, in the sense that a flow is exported
to the monitoring station when it has expired [17]. Sampling is sometimes
required because a router can’t keep up with the high transfer rates. To get
more detailed information about the flows seen by the router we developed a
Netflow collector (based on ’Flow-tools’ [18]) that gathers the flows that are
exported by the router, process them and calculates our detection metrics. The
sampling period used was 30sec.

• Flow length distribution. The distribution of the number of packets in a
flow (per protocol) can provide a good sign of a spoofed DDoS attack. A
high number of flows with few packets (1-3) is a hint for DoS because of
the randomness in the source addresses and ports. More specifically we
use the number of flows with one packet (FL1).

• Flow lifetime distribution. Similarly, the distribution of the lifetime of a
flow in a routers cache is sensitive to DoS attacks but to port scans as well,
producing thus a high number of false positives. Nevertheless, we chose to
use as an input metric the number of flows with lifetime < 10ms (FT10)
according to the router’s reports and the flow-tools utility implementation.

• Flow generation rate. In [19] was mentioned that the number of learn-
ing failures of a flow accounting algorithm was able to identify spoofed
flooding attempts. The reason is that when a flooding attack occurs the
amount of ’transports that are not completed’[17] is large and the en-
tries are not removed gracefully but are filling up the cache causing flow
learning failures. A similar metric that we used in this work is the flow
generation rate (FR) measured in flows per second.

Based on these metrics we use the following input vector with N=5 elements:
i(t) = [UR(t)IR(t)FT 10(t)FL1(t)FR(t)]

2.2 Neural Network configuration

A Perceptron is an elementary network in which a neuron unit calculates the
linear combination of its real-valued inputs and passes it through a threshold ac-
tivation function. A multilayer Perceptron is a hierarchical structure of several
Perceptrons. If we use non-linear activation functions (for example a sigmoid
function) in the neural nodes, it can be trained to reproduce a nonlinear function
mapping. To address our classification problem we chose to use feed forward
network (MLP) with three layers: an input, a hidden and an output layer. As
we use an input vector i (|i| = N) the input layer is constructed with N linear
neurons. The second layer , which makes the neural network capable of recog-
nizing M non-linearly separated classes(in our case attack and normal states),
is constructed with H = 2N + 1 sigmoid neurons. As the theory indicates
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Figure 2: Samples of the UR and FT10 metrics during a UDP attack.

([11] based on Kolmogorov’s theorem [12]) by using at least 2N + 1 neurons in
the hidden layer the neural network can approximate any continuous function
F : [0, 1]N → RM . We conducted experiments with the number of neurons in
the hidden layer and analyzed the performance of the MLP classifier in each
case. Our choice is supported by the fact that even if we increase the number of
hidden units H > 2N +1 the efficiency of our classifier isn’t increased. With our
choice we can recognize attacks and normal states while keeping our network
small (Fig. 3). Although the exact relation between the number of neurons
and the network response is not clear, we chose this value in order to avoid
over-fitting.
The inputs of the network are the values of the detection metrics measured over
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a specific time period and were discussed in section 2.1. The size of the output
layer depends on the number of classes M we are using to describe the network’s
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state. In the first case of simple attack detection the output layer is made of just
one sigmoid neuron that generates output values between 0 and 1. We represent
a normal network state with the value 0 and an attack state with the value 1.
If we differentiate between ”DDoS source”, ”DDoS victim/destination” in the
case of an attack, we use two sigmoid output neurons that generate ”01”,”10”
respectively and ”00” for ”Normal”. Because of this binary representation the
output of the MLP is filtered by a hard limit function which classifies values
below 0.5 as normal states and values over 0.5 as attacks. The exact value of the
threshold is not affecting the detection performance as we have a good classifier
with almost binary outputs(figure 4).
The equations that describe our system are: a1 = tansig(IW1 p + b1) , a2 =
tansig(IW2 a1 + b2) , o = hardlim(a2) , where p is our input vector i(t) and o
is the output of the classifier. The matrices IW1,IW2 (weights) and the vectors
b1,b2 (biases) are parameters that are determined during the training phase.
By repeatedly presenting to the network a set of inputs and desired outputs,
a training algorithm (for example a backprobagation algorithm) calculates the
desired values for IW1,IW2,b1,b2. The MLP simulation and the analysis of the
experimental data was performed with the use of the Matlab Neural Network
Toolbox. The initial values of weights and biases were randomly chosen by Mat-
lab and this introduced a random factor in each training attempt. That’s why
in order to obtain a representative and consistent view of the MLP’s behavior
we repeated each test several times. The sigmoid transfer function of the hid-
den and output layer neurons was the hyperbolic tangent function that can be
efficiently computed. The backprobagation algorithm that was used for training
and convergence of weights and biases to their final values, is the Levenberg-
Marquardt algorithm [13]. This algorithm is known in the bibliography for its
fast training ability.
At this point we should discuss the feasibility of our approach as an on-line
detection system. An already trained ANN can easily keep up with high input
data rates. The algorithms associated with the training phase might have high
computational complexity but this doesn’t apply to the operation phase. This
way network administrators could collect representative input data and train
the detection system offline. Experience with the NTUA campus network that
for a period of at least 6 months the normal values of the metrics that were used
in our analysis remained in a constant interval but we can re-train the network
periodically to adapt to long-term network changes.

3 Experimentation platform

To evaluate the effectiveness and usability of our detection engine we have per-
formed a series of experiments on an academic research network. As we argued
in the introduction, DDoS detection on an over-provisioned high-bandwidth link
where traffic is aggregated but stays in low utilization levels holds great inter-
est. We monitored the Gigabit Ethernet link between an academic ISP and a
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large university that is a single hosted network with a fast but under-utilized
upstream link. Some information of interest is that this link keeps a sustained
rate of 250Mbps with peaks higher than 450Mbps and contains a rich network
traffic mix carrying both standard network services like web traffic, but also
peer-to-peer application traffic, online games, as well as streaming audio and
video traffic. This fact is significant because some detection algorithms might
work fine in simulation or lab-testbed experiments, but their high false alarm
rate when facing real traffic renders them useless. We conducted more than
36 experiments over several days during business hours and with background
traffic generated from the more than 4000 hosts of the university campus. Our
total sample size was 2159 points that corresponds to approximately 18 hours.
In the first experiment scenario the victim was located inside the campus with
a 10Mbps link whereas the attacker was outside the campus coming directly
from its ISP. The attacker was connected to a 100Mbps interface to simulate
the aggregation of traffic from several attacking hosts (Fig. 5). Using a mod-
ified version of the well known DDoS tool TFN2K [20] we performed a series
of UDP flooding attacks with spoofed IP’s, 3 minutes duration and controlled
packet and bytes generation rates. In the second experiment set the roles were
reversed and the university network became the attack source. In table 1 we
show the combinations of attack characteristics. Note here that the attack traf-
fic rates is only a fraction of the normal UDP traffic. The attacks used the
common method of selecting source addresses from the attacker’s real subnet in
order to bypass any e-gress or RPF filtering.
In figures 7-6 we see the range of values each metric takes in the case of attacks
and in normal states. We divided our samples into two classes : attack and
normal states and plotted them without chronological order. On the left side
we see normal states represented by circles and on the right side attack states
represented by crosses. With this diagram we highlight that the attack and
normal classes are not linearly separated. Although there is a definite trend, for
example high values of the FT10 metric is in most cases an attack indication,
there is still an uncertainty. In section 4.4 we see the gain of using an MLP in
comparison to simple thresholds on single metrics.

Table 1: The combinations of attack characteristics (UDP traffic only).
Edge network
state

# Attacks Bandwidth
range (Mbps)

Packet rate
range(pps)

DDoS source 16 1-6 1000-6000
DDoS victim 32 1-6 1000-6000
Normal - 12 - 30 2500-4500
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Figure 7: The UDP ratio metric
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Figure 9: The FL1 metric
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4 MLP detection performance

4.1 Performance Evaluation Criteria

We will borrow the following definitions from traditional detection theory to
evaluate the performance of our detection system: TP (true positives) = #
alerts (test positive) and attack is present , FN (false negatives) = # no alerts
(test negative) and attack is present, FP (false positives) = # alerts (test pos-
itive) and attack is not present and TN (true negatives) = # no alerts (test
negative) and attack is not present.
Our study of the MLP detector’s performance focuses on the following two
metrics: the rate of true positive alarms (sensitivity), which is the number
of alerts when there is an on going attack to the total number of attacks:
TPR = Sn = TP

(TP+FN) and the rate of false positive alarms (1-specificity),
which is the number of alerts when there is not an on going attack to the total
number of normal states: FPR = 1−Sp = FP

(TN+FP ) . These values are used to
draw Receiver Operating Characteristic (ROC) curves that show the sensitivity
tradeoff of our detector.

4.2 Learning and Generalization Ability

Our data set was divided in a training set and a validation set in approximately
7%-93% proportion. The training phase had a maximum of 400 epochs and
the performance goal was set to 10−9. In figure 11 we can see the detection
performance of the corresponding ANN in the face of new data, ie the validation
set. We visualize the detection ability of the MLP in figure 11 where real
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line represents the threshold of 0.5 above which results are classified as attacks.
Using the ”DDoS source”, ”DDoS victim”, ”Normal” classification scheme we
see the results in figure 12. The results shown are the output of the neural
network before being filtered by the binary threshold function. These results
obviously show that using a neural network for DDoS attack detection is a
promising approach. Without further improvements a successfully trained MLP
can classify attacks and normal states with TPR > 74% and FPR < 3%.
Taking into account the relatively small size of training set, the large size of the
validation set, along with the fact that our data stems from several hours of
real production-network traffic, the generalization ability of the neural network
is impressive.

4.3 Preprocessing

In this section we will discuss potential improvements of our approach with the
use of preprocessing techniques. In the beginning we will explore the use of nor-
malization. In figure 13 we can see that we have a higher concentration of points
in the upper left area when we normalize our input data i(t) in the [−1, +1] in-
terval. This is a standard practice in the field of Neural Networks that helps
our network to be trained easier. We define inorm(t) = 2∗(i(t)−min(i))

max(i)−min(i) − 1. The
vectors min(i) and max(i) contain the minimum and maximum values of the
input signals and are specific to the metrics we use. After the network has been
trained, these vectors should be used to transform any future inputs that are
applied to the network. They effectively become a part of the network, just like
the network weights and biases.

Another potential improvement is based on the common belief that we can
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Figure 14: Output of the Detection System
using window size T=5,10,20.

decide if a DDoS attack occurs not only based on instantaneous metrics but
also judging from the metric’s past values. We follow this approach and we
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augment our original input vector for example i(t) =< UR(t), FR(t) > with
each metric’s difference from an average over a window W = (t − T, t) of
past T values 2: i(t) =< UR(t), FR(t), diff(UR(t)), diff(FR(t)) > where
diff(x(t)) = x(t)−avg(x(W ))

avg(x(W )) .
We train and evaluate the performance of the MLP using a window size T=5,T=10
and T=20 and show the results in figure 14. On the one hand we would expect
history to aid the detection performance since attacks often appear as abnormal
bursts in network characteristics that follow a diurnal circle. On the other hand,
if the history window we take into account consists of several successive abnor-
mal measurements (which depends on the duration of the attack) we might get
a false impression of stability. In any way our results indicate that further re-
search is needed to determine whether to include past values in the input vector
and what the optimum window size is. A comparison of the MLP’s performance
using the original or augmented input is shown in figure 15.
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4.4 Comparison with simple thresholds

In order to have a comparative estimate of the performance of our detection
mechanism we have used sigmoid thresholds on single metrics as simple detection
sensors. The results that are shown in figure 16 are indicative of the superiority
of a data-fusion technique like our MLP. By combining several metrics and by
training the ANN we are able to achieve much higher detection rates with the
same number of false positives. These results are promising for the development
of truly efficient DoS detection systems that take advantage of several detection
heuristics.

2we abuse the formal mathematical notation and we represent avg(UR(t-T),UR(t-
T+1),...,UR(t)) as avg(UR(W))
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5 Conclusion

In this paper we view DDoS detection as a classification problem and propose a
set of detection metrics that are based on complementary passive measurement
methods like packet capturing and Netflow based traffic monitoring. Our met-
rics are fused with a multilayer Perceptron (MLP) that classifies the network
state into 2 (attack and normal) or 3 (DDoS source, DDoS victim, normal)
classes. The evaluation of our detection engine was based on experiments that
used a customized version of the TFN2K tool, capable of launching UDP floods
with adjustable bandwidth and packet rate, and took place in a national aca-
demic ISP network. Detailed performance measures of various configurations
were presented in the form of ROC curves. To sum up, we consider our detec-
tion approach successful as it is able to classify attacks with high true positive
rates while keeping false positives low. We demonstrated that we don’t need
complicated per IP address or per flow metrics to detect DDoS attacks in a real
operational network. Based on multiple but simple detection metrics we can
create simple classifiers such as our MLP that can detect attacks originating or
destined to an edge network. We hope that it opens a new direction in DDoS
detection research where multiple and rather high level detection metrics and
simpler analysis methods (with smaller computational complexity) are used.
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