Network Monitoring and Measurements: Techniques and Experience

Supratik Bhattacharyya
Sue Moon
Tutorial Outline

• Introduction
 – Internet architecture
 – The Sprint IP Backbone
 – Monitoring: requirements and challenges

• Current techniques
 – taxonomy, tools and techniques

• The IPMON project

• The future of monitoring
Tutorial Outline

• Introduction
 – Internet architecture
 – The Sprint IP Backbone
 – Monitoring: requirements and challenges
• Current techniques
 – taxonomy, tools and techniques
• The IPMON project
• The future of monitoring
The Internet Design Philosophy

• Packet switching
• Continued communication around failures
• Support for diverse services and protocols
• Distributed management of resources
• No access control
• Simplicity at the core, complexity at the edge
The Internet Hourglass (Deering@IETF)
What is the Internet today?
Today’s Tier-1 Backbones

• Technologies
 – IP over SONET (POS)
 – IP over ATM
 – IP over MPLS

• Topology - points-of-presence (POPs) connected by long-haul fiber
 – numerous small POPs (e.g., UUNet)
 – relatively few large POP (e.g., Sprint)
Tutorial Outline

• Introduction
 – Internet architecture
 – The Sprint IP Backbone
 – Monitoring: requirements and challenges

• Current techniques
 – taxonomy, tools and techniques

• The IPMON project

• The future of monitoring
Sprint IP Backbone
A Backbone POP

- **Peer**
- **Core Router**
- **Other POPs**
Common Engineering Practices

• “Over-subscription” at edge

• Protection
 – large scale outages happen regularly
 – “over-provisioned” core
 – MPLS/TE does not help

• Service Level Agreements:
 – delay (e.g., 55 msec round-trip in USA)
 – loss (e.g., 0.3%)
 – port availability (e.g., 99.99%)
Over-subscription and Over-Provisioning

Over-subscription

Rest of Backbone

Over-provisioning
Intradomain Routing : IS-IS

- Link weights
 - inter-POP links >> intra-POP links
- Updating weights:
 - set by hand
 - modified infrequently, usually for large-scale failures
- One-way latency across backbone governs weight selection (hence routes)
IS-IS Load Balancing and Protection

- Multiple parallel links between POP pairs
- Per-prefix splitting over equal cost paths
Interdomain Routing: E-BGP & I-BGP

R1

AS1

R2

AS2

R3

I-BGP

IS-IS

R4

AS3

R5

announced B
Multi-homing and Hot Potato Routing

Peers need to be “consistent” in their route announcements.
Transit vs. Non-transit AS

• Transit AS
 – carries traffic between two other ASes
 – propagates routes learnt from other ASes
Sprint practices

• Multi-homing with large peers and customers
• Hot Potato Routing
• Non-transit for peers
• Transit for customers
Sprint Service-Level Agreements

• Peers : no money exchanged
 – at a network exchange points (NAP)
 – point-to-point links(OC-3/12/48)

• Customers :
 – flat fee by link bandwidth

• Performance Guarantees :
 – 55 msec latency across USA
 – 0.3% loss
 – 99.9% availability
Tutorial Outline

- **Introduction**
 - Internet architecture
 - The Sprint IP Backbone
 - Monitoring: requirements and challenges
- **Current techniques**
 - taxonomy, tools and techniques
- **The IPMON project**
- **The future of monitoring**
Monitoring Implications of Network Design

• Network elements do not collect data
• Protocols do not provide feedback
• Network adapts to failures/congestion
• No centralized collectors
• Distributed administration:
 – operator has no control beyond own network
Monitoring Requirements

• Planning and design
• Traffic engineering
• Troubleshooting and fault diagnosis
• Customer feedback
• Research
Planning and design

- Capacity Planning
 - where to put additional capacity, when?
- Controlled evolution
 - new link/router/customer
 - new applications/protocols
- New technologies
 - MPLS, QOS, etc.
- Router Design
 - buffer dimensioning, AQM, etc.
Traffic Engineering

- Selecting primary and backup routes
- Accommodating changes
 - topology, customer usage pattern, new applications
- Routing protocols
 - configuring BGP policies, ...
Troubleshooting and Fault Diagnosis

• Some examples:
 – a link is suddenly overloaded
 – a route suddenly disappears from BGP table
 – DOS attack on a customer
 – router shows high CPU utilization
 – is a peer using me for transit?
Operations and Management

• Need
 – up-to-date traffic and routing info
 – tools to correlate them

• But…
 – do no harm
 – simplicity above all!
 – minimal changes to network
 – cannot change router configuration
Customer Requirements

- Adherence to SLA
 - difficult to verify/prove
- Protection for attacks
 - block, trace back to attackers
- Traffic Engineering:
 - how are packets being routed?
 - what are the delay/loss statistics on these routes?
 - protocol/application/AS number breakup
 - multi-homed customers
Research

• Monitoring is key to evolution of the Internet:
 – understanding its global complexity
 – designing new algorithms/protocols
 – paradigm shifts (e.g., peer-to-peer)
 – changes in design philosophy

Challenge:
 collecting and analyzing massive volumes of data!
Limitations

• Technical
 – poor support in routers
 – must not interfere with network operations
 – need storage and analysis infrastructure

• Non-technical
 – Proprietary
 – Legal
 – Privacy
 – Cost
Tutorial Outline

• Introduction:
 – current Internet architecture
 – benefits and challenges of monitoring

• Current Techniques:
 – taxonomy, tools and techniques

• The IPMon Project

• The future of monitoring
Taxonomy: Information Types

Data Plane

- **Packet-level**
 - port #, src and dst addr, type, length
- **Flow-level**
 - duration, total # of packets and bytes, application
- **Network element-specific:**
 - link utilization, dropped packet count
- **Network-level**
 - Can be derived from packet/flow-level
 - ingress vs. egress traffic
Taxonomy: Information Types

Control Plane

– Routing information
 • static - snapshots of routing tables
 • dynamic - update messages, policies

– Topology
 • Databased in facility management system
 • Physical/L2/L3 layer

– Configuration
 • relatively static, but not widely available.
Taxonomy: Observation Points

• Edge vs. core:
 – Access is often limited
 – Link-level statistics not accessible from edge
 – Important to combine observations from different points
Metrics Derived from Measurements

Loss
 – Drops per interface
 – end-to-end loss
 – per-AS loss rate

Delay & Jitter
 – One-way vs. RTT
 – Single vs. multi-hop
 – Avg vs. max
Metrics Derived from Measurements

Utilization levels
 – Derived from byte counts

Routing reachability
 – Duration and frequency of unreachability
 – # of ASs and prefixes affected

Failure
 – Frequency
 – Duration
Issues

Amount of data
 – Storage
 – Processing and transfer overhead

Level of aggregation
 – Temporal aggregation
 • Sub-second, minutes, daily, and weekly
 – Research vs. operation
 • Packet-level vs. flow/link/network-level
Network Matrices

• Network-wide representations of various metrics
 – traffic volume (Traffic Matrices)
 – delay, loss, utilization, …

• Many statistics
 – average, peak, variance, etc.

• Many aggregation levels
 – POP-to-POP, router-to-router, AS-to-AS, …
Example: AT&T Latency Matrix

Current Average: 35 msec

Latency in milliseconds

Copyright Sprint Advanced Technology Laboratories
Which Network Matrices to Build?

• What do applications need?
 – network design, TE, customer reports, operations, ...
 – may only need some components

• What is scalable?
 – e.g. router-to-router is far bigger than POP-to-POP
Active Measurement

Probes are injected into the network

- Can overload the network
 - careful calibration needed
 - Poisson-generated traffic often used

- Measure from the edges
 - Does not need access to inside of network
 - Can only infer network-internal performance
Active Measurement Tool: Ping

ICMP-based tool for host reachability

- Algorithm
 - Sends an ICMP echo request with:
 - Identifier for unique ping process
 - Sequence number per echo request
 - Receiving host returns an ICMP echo reply
 - Prints out RTT, TTL, and seq. #.

- Issues
 - different processing path from other packets
Active Measurement Tool: Traceroute

Used to find out the forward path to a host

• Algorithm
 – Send an IP datagram with TTL=1
 – First router sends back ICMP time exceeded
 – Then send a datagram with TTL=2
 – Continue till destination is reached/TTL expired

• Issues
 – not suited for performance measurements
Packet-Pair Based Bandwidth Estimation

RTT

rate estimate

Source Router Bottleneck Sink

Time

bottleneck rate
Pathchar

Vary L, fit line to $\min[\text{RTT}(n) - \text{RTT}(n-1)]$

Slope of line gives $\frac{1}{c}$

$$2p = \text{RTT}(n) - \text{RTT}(n-1) - [2L/c + e]$$

Based on TTL expiration (like traceroute)
Active Measurement Projects

National Internet Measurement Infrastructure (NIMI)
 – Provides infrastructure for active measurements
 – BSD-based hosts, scalable, dynamic

NLANR AMP

RIPE NCC
Commercialized Monitoring Services

Matrix
 – Ping-based monitoring of customers

KeyNote
 – Subscription-based service of application-specific monitoring

Shortcomings:
 – Techniques often depend on starting points, not on the network
Passive Measurement

No traffic injected for measurement purpose

- Not invasive
 - Only data collection increases traffic
- Access limited
 - Measurement about total traffic
 - Privacy/Security - serious concern
Tcpdump

Puts a network interface to promiscuous mode

- captures only frames matching filters
- shows
 - network interface info, time, src and dst, etc.
 - or entire payload

Issues

- security: sees all frames on the Ethernet
- host performance penalty
- timestamps not always dependable
Passive Measurement Examples

Packet monitors
- Tcpdump for Unix-based hosts
- Dedicated measurement systems
 - OC3MON, IPMON

Router/switch traffic statistics
- Network internal behavior
- SNMP MIBs
- Flow-level information
SNMP

Managed entity

Managed device

Agent

data

Agent

data

Simple Network Management Protocol
Packet-level measurements

• Pros:
 – very fine granularity

• Challenges:
 – link speeds are increasing!
 – Large volumes of data
 – system design issues:
 • disk/PCI bus speeds
 • installation cost
Flow-level measurements

• Many granularities
 – five-tuple, BGP prefixes, IP header fields, etc.
• Pros
 – aggregated information
• Challenges
 – packet-to-flow mapping
 – terminating expired flows
 – CPU/memory requirements on routers
Flow-level Monitoring: Cisco Netflow

NetFlow: mechanism to gather flow statistics
– caches flow statistics per router interface and sends records by UDP
– Route-based aggregation possible
 • By AS, protocol port, src prefix, dst prefix, prefix
– Data flows from NetFlow-enabled device to FlowCollector
 • No MIB or SNMP
 • More aggregation possible at FlowCollector
Netflow Pros and Cons

Pros
– provide statistics on every flow
– detailed prefix-to-prefix traffic matrix

Cons
– High memory requirement for short flows
– feasible at access routers, not backbone routers
– route changes flushes flow cache, may cause CPU overload
– Flow statistics in UDP: losses during peak usage
Commercial Passive Measurement Tools

HP’s OpenView
- Integrated network management tool based on SNMP statistics
- Combined with configuration, visualization, reporting mechanisms

Agilent NetMatrix:
- Passive monitoring gear for LAN and up to OC-12 ATM

Niksun’s NetVCR solutions
- Packet monitor based management system
Research Project: CAIDA

Cooperative Association for Internet Data Analysis (http://www.caida.org)

– Measurement tools:
 • OCxMON, cflowd, CoralReef, NeTraMet: passive
 • Skitter: global coverage by traceroute

– Visualization tools:
 • Walrus, Otter, Plankton: graph visualization
 • Gtrace: traceroute visualization
 • MapNet: major ISP maps
Some Other Research Projects

• AT&T Labs Network Measurement Tools
 – active/passive, flow-level data, routing updates

• Surveyor:
 – one-way loss and delay as defined by IPPM

NLANR’s PMA and AMP
 – Passive and active measurement sites
 – Packet traces from passive measurement made public
Routing Research Projects

Routeviews

- 50+ peering at route-views.oregon-ix.net
- MRT format RIBs and BGP updates, “show ip bgp” dumps, route dampening data
- only E-BGP

RIPE (Réseaux IP Européens)

- routing updates from 9 mostly European IXs
- “Looking Glass” services for BGP
- Routing information service (RIS)
IETF/IRTF Activity

- IETF Working Groups
 - IPPM
 - IPFIX
 - BMWG
 - PSAMP
- IRTF
 - IMRG
Tutorial Outline

• Introduction
• Current techniques
• The IPMON project
 – infrastructure and data
 – selected results
• The future of monitoring
Tutorial Outline

- Introduction
- Current techniques
- The IPMON project
 - infrastructure and data
 - selected results
- The future of monitoring
IPMON Goals

- Identify open problems for an operational network, influence its evolution
- Feedback to network design and engineering
- Tools for operations and management
Data

- Packet traces
- SNMP statistics
- IS-IS/BGP Listeners
- Active Measurement Probes
Collecting packet traces

- Insert optical splitter on links in multiple POPs (OC-3/12/48)
- Collect and timestamp TCP/IP headers (44 bytes) - 2us clock accuracy
- Collect routing information (IS-IS, BGP)
- Transfer data to lab for off-line analysis (SAN based analysis platform)
Monitoring System Architecture

Analysis platform (located @ Sprint ATL)
Monitoring System Architecture

Diagram:
- OC-3/12/48 link
- Optical splitter
- GPS clock
- DAG Card
- SONET
- Main memory buffer
- Disk array
- IPMON system
- Linux PC with multiple PCI buses

90% and 10% labels on the diagram.
Current Status

• Three POPs:
 – one west coast, two east coast
 – 50+ IPMON systems
 – OC-3 to OC-48 capabilities
Practical Constraints

• Difficult to monitor operational network:
 – complex and expensive procedure
 – network evolves too fast

• Technology constraints:
 – line speeds are increasing...
 – PCI bus, disk speeds need to keep up!
 – need sophisticated storage systems
Python Routeing Toolkit (PyRT)

Listener software to collect IS-IS/BGP updates:

– **IS-IS listener:**
 - collects updates on link failures, weight changes, etc.

– **BGP listener:**
 - implements minimal subset of BGP state machine

– Publicly available

– Data format compatible with other projects (Routeviews, etc.)
IPMON Data Management System

- **Motivation**
 - management of 10+ terabytes
 - keep track of “metadata”
 - information sharing

- **Entities to manage**
 - packet traces, routing updates
 - location, date of collection, link speed, etc.
 - analysis results
Tutorial Outline

• Introduction
• Current techniques
• The IPMON project
 – infrastructure and data
 – selected results
• The future of monitoring
IPMON : Selected Results

- Part I: Traffic mix and patterns
- Part II: Packet delay and reordering
- Part III: SNMP analysis
- Part IV: Routing analysis
IPMON: Selected Results

• Part I: Traffic mix and patterns
 – volume
 – application breakup
 – packet sizes
 – detecting DOS attacks

• Packet delay and ordering

• SNMP analysis

• Routing analysis
Volume on an OC-12 Link
Application Breakup on OC-12 Links

Tier-2 access

CDN access
Packet size distribution on OC-48 Link

Trace: 1 hour, 676 million packets
Detecting DOS Attacks

TCP SYN bursts
Lessons Learnt - Part I

- Links differ in characteristics
- Web traffic dominates, but p2p is making inroads
- Monitoring reveals changes in traffic mix and characteristics
IPMON: Selected Results

- Traffic mix and patterns
- Packet delay and reordering
- SNMP analysis
- Routing analysis
Delay through a router - OC-12

[Papagiannaki et al 02]

Copyright © Sprint Advanced Technology Laboratories
Delay across the USA

- min: 27051
- avg: 27063
- 90%: 27080
- 99%: 27119
- max: 27129
Out of Sequence packets

• Challenge
 – how much of packet reordering?
 – where do they occur?
 – what are the causes?

• Our approach: analyze TCP flows in the mid-point of its path
OOS Classification [Agarwal et al. 02]

All numbers in p.c.

<table>
<thead>
<tr>
<th></th>
<th>CDN</th>
<th>Tier-1 ISP</th>
<th>Tier-2 ISP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-sequence</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Retransmissions</td>
<td>88</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>Unneeded Retransmission</td>
<td>7</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Network Duplicate</td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Reordering</td>
<td>1</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Unknown</td>
<td>3</td>
<td>5</td>
<td>1.53</td>
</tr>
</tbody>
</table>
Lessons Learnt - Part IIb

• Delays
 – speed of light
 – no jitter

• Out-of-Sequence
 – about 5% of packets
 – mostly due to loss
 – little duplication due to loops, etc.
IPMON: Selected Results

- Traffic mix and patterns
- Packet delay and ordering
- SNMP analysis
- Routing analysis
Maximum Link Load on Sprint Backbone
Effect of Failures
Lessons Learnt - Part III

• At all times, there are some overloaded links:
 – difficult to distribute traffic evenly
 – Link failures happen often
 – difficult to plan for link failures

• Average utilization conveys incomplete picture

• Essential to dampen peaks before increasing average utilization
IPMON: Selected Results

- Traffic mix and patterns
- Packet delay and ordering
- SNMP analysis
- Routing analysis
Information Sources

- BGP table snapshots
- ISIS/BGP listener logs
- Router logs
- Controlled bi-directional active probes
- SNMP data
Duration of Link Failures at IS-IS Level

Many short failures, usually one at a time
Some long outages, usually several links
BGP Activity: Temporal Trends

- Background noise:
 - 50-250 BGP updates/min
 - $O(1000)$ prefixes
 - $\sim 1\%$ routing table

- Peaks at late night/early morning
- 20-40% of routing table

 Exceptions
Active BGP Prefixes

No. of entries in BGP table ~120K !
Elephant and Mice Prefixes

Most elephant prefixes are /16 to /26
Other BGP findings

• About 5-6% of BGP updates affect prefixes carrying 80% of traffic
 – little effect on packet loss/reordering
 – but what about shifts in traffic patterns?
• Elephant flows are not stable
 – hard to use for load balancing
Lessons Learnt - Part IV

• Need to understand and control effect of “failures”
• Routing is poorly understood
 – interaction of BGP/IS-IS
 – how to set BGP policies
 – how to configure IS-IS (timers, etc.)
• Beneficial to correlate different data sets
Tutorial Outline

• Introduction
• Current techniques
• The IPMON project
 – infrastructure and data
 – selected results
• The future of monitoring
The Future of Monitoring: Topics

• Obtaining traffic matrices
 – inference techniques
 – direct measurements

• Router support for path tracing
 – IP traceback
 – Trajectory sampling

• Sampling
 – approaches and challenges
The Future of Monitoring: Topics

- Obtaining traffic matrices
 - inference techniques
 - direct measurements
- Router support for path tracing
 - IP traceback
 - Trajectory sampling
- Sampling
 - approaches and challenges
An under-specified problem:

\(n \) links, \(O(n^2) \) O-D pairs

Need statistical techniques to make “smart” guess

Assume routing is known

POP-to-POP Topology

Estimating TMs from SNMP Link Counts
Formal Problem Statement

\(X_j \): Traffic demand for POP pair \(j \)

\(n \): number of POPs

\(r \): number of links

\(c \): Number of POP pairs

\(-\ c = n \times (n - 1)\)

\(A \): \(r \) by \(c \) 1-0 routing matrix

\(Y_i \): Link count on link \(i \)

\[A_{r \times c} X_c = Y_r \]
Proposed Statistical Techniques

- Linear Programming [Goldschmit 00]
- Network Tomography [Vardi JASA 96]
- Bayesian Estimation [Tebaldi & West 98]
- Maximum Likelihood Estimation [Cao et al 98]
Comparison [Medina et al. 2002]

- SNMP data is not enough
 - large errors
 - Bayesian: 20%-60%
 - EM: 11% - 40%
 - LP is larger
 - statistical assumptions not valid
 - marginal gain from partial information
- All methods sensitive to prior
- No good model for O-D traffic flows
Estimating POP Fan-out [Medina et al 02]

- Why does POP i choose POP j
 - user behavior
 - network design and configuration
- Use choice models
 - criterion: maximize utility

\[U_{ij} = V_{ij} + e_{ij} \]

\[V_{ij} = m_1 \cdot W_{ij}(1) + m_2 \cdot W_{ij}(2) + \ldots + g_j \]
Estimating POP Fan-out (contd.)

• Demand between i and j: \(X_{ij} = O_i \alpha_{ij} \)

 \(O_i = \text{total traffic sourced by POP i} \)

 \(\alpha_{ij} = \text{fan-out factor} \)

• Model for fanout

 \[
 X_{ij} = O_i \frac{\exp(V_{ij})}{\sum_{k \in S} \exp(V_{ik})}
 \]

• Initial Model: estimate \(m_1 \), \(m_2 \) and \(g_i \) using

 – \(W_j(1) \): outgoing bytes at POP i

 – \(W_i(2) \): incoming bytes at POP j
Measured fanouts
Initial Validation: Fitting Observed Data

- Parameters estimated using MLE with
 - SNMP link counts
 - fanout for three POPs

Validates exponential form for fan-out
Direct Measurement at Ingress

Measuring at egress : hard to disambiguate ingress
Challenges of Direct Measurements

• Scalability
 – monitor every ingress interface
 – how much data, what granularity
 – router overhead

• Possible directions
 – build components of TM for specific purposes
 • customer request, problem peers, etc.
 – can we monitor periodically?
The Future of Monitoring: Topics

• Obtaining traffic matrices
 – inference techniques
 – direct measurements

• Router support for path tracing
 – IP traceback
 – Trajectory sampling

• Sampling
 – approaches and challenges
IP Traceback: Basic Idea

Goal: *Trace sink tree from victim to source of attack, even with address spoofing*

- **Victim**
 - probability of receiving mark from d hops = \(p(1-p)^{d-1} \)
 - reconstruct path based on counting marks from each router

- router marks its address in a packet with probability \(p \)

a → *a* → *b* → *c* → **Victim**
IP Traceback : Edge Sampling

• Issues
 • slow process : \(p = 0.51, d = 15 \), need 42K packets
 • not robust to multiple attackers

\[a \xrightarrow{\text{a XOR b}} b \xrightarrow{\text{b XOR c}} c \]

Victim

• Need additional (short) field to mark distance
• Further compression possible...
Trajectory Sampling [Duffield et al 00]

• Key Idea:
 – Track the “trajectory” of a packet by consistent sampling everywhere

• No statistics or inference techniques

• Uses:
 – how is a customer’s packet routed?
 – is routing working as expected?
 – diagnosing source address spoofing
Trajectory Sampling

Sample same pkt everywhere or nowhere

\(g(x) \) is deterministic

\[
\begin{array}{|c|c|c|c|}
\hline
\text{label} & \text{src} & \text{dest} & \text{length} \\
\hline
\text{g(x1)} & \text{a.b.c.d} & \text{w.x.y.z} & \text{500} \\
\hline
\end{array}
\]
The Future of Monitoring: Topics

- Obtaining traffic matrices
 - inference techniques
 - direct measurements
- Router support for path tracing
 - IP traceback
 - Trajectory sampling
- Sampling/Filtering
 - approaches and challenges
Why Sampling/Filtering?

Problems with large volumes of data

– feasibility of collection at high-speeds
 • memory/bus/processor requirements
– storage limitations
– complexity of analysis
State-of-Art

• Cisco
 – sampled netflow
 • capture 1 in N
 • aggregate by five-tuple

• Juniper
 – filter on any combination of header fields
 – sample 1 in N
 • recommends 1 in 1000 or less
Comparison of Approaches [Claffy et al 93]

- Traffic Characteristics
 - packet size distribution
 - inter-arrival times

- Key Results
 - Packet-triggered techniques better than time-triggered
 - difference within each class is small
Flow-Level Sampling [Duffield et al 01]

• Motivation
 – charge for measured usage
 • fixed charge below threshold
 • usage-based charged above threshold
 – sample a subset of flows with common property, e.g., source/destination address

• Key Idea :
 – flow size distribution is heavy-tailed
 – need lower estimation error for larger flows
Flow-level Sampling [Duffield et al 01]

• Approach
 – Each flow i has size x_i and color c_i
 – Goal is to estimate total usage $X(c) = \sum_{i: c_i = c} x_i$
 – Sample flow i with probability $\min \{1, \frac{x_i}{Z}\}$

• Important results
 – yields unbiased estimate
 – variance decreases as x_i increases
 – much smaller errors than 1 in N sampling
Towards a Two-Tier Monitoring System

Goal: make monitoring an integral part of backbone engineering and operations

• Tier 1
 – network-wide continuous monitoring
 – coarse-grained, long time-scales

• Tier 2
 – on-demand monitoring at specific points
 – fine-grained, short time-scales
Challenges

Collecting fine-grained packet data is hard!

• Sampling techniques
 – should be requirement-driven
 – need complete traces for evaluation

• (Re)Design hardware to support monitoring
 – custom-built equipment
 – router architecture...
Monitoring on Routers

- **Pros**
 - no additional infrastructure
 - up-to-date routing tables

- **Cons**
 - space and storage constraints
 - switched backplane

Modern Router Architecture
Monitoring on Routers: Open Issues

- **Feasibility**
 - how much memory?
 - what operations can be performed?
 - What part of the packet to capture?
 - What to export, how often?
Tutorial Summary

• Monitoring IP networks
 – difficult… but essential

• Some tools/techniques exist
 – but a lot more remains to be done

• Need integrated infrastructure
 – router support
 – wider data collection and sharing
 – storage/analysis capabilities
 – sampling and scalable export
How To Contact Us

• Email
 – sbmoon@sprintlabs.com
 – supratik@sprintlabs.com

• Visit us on-line
 – www.sprintlabs.com
 – under development: ipmon.sprintlabs.com