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Abstract—Traffic matrices (TMs) contain information that
is essential for network management, traffic engineering, and
anomaly detection. However, constructing a TM through direct
traffic measurements has a high administrative and computa-
tional cost. A more feasible approach is to estimate the TM from
the easily obtainable link load measurements. In this paper, we
address the issue of traffic matrix estimation (TME) from link
loads using a deep generative model – namely, a variational
autoencoder (VAE) – to solve the respective ill-posed inverse
problem. In particular, we train the VAE with historical data
(previously observed TMs) and we leverage the trained decoder
to transform TME into a minimization problem in the latent
space, which in turn can be solved by employing a gradient-
based optimizer. Furthermore, the trained decoder can be used
for traffic matrix synthesis, i.e., for generating synthetic TM
examples that have “similar” properties to the samples of the
training set. Finally, we explore the incremental optimization
of the sequence of objectives constructed from the sequence of
decoders that we obtain at different stages of the VAE training.
The performance of the proposed methods is evaluated using a
publicly available dataset of actual traffic matrices recorded in
a real backbone network.

Index Terms—Network monitoring, network tomography, traf-
fic matrix estimation, deep learning, variational autoencoder.

I. INTRODUCTION

The traffic matrix (TM) quantifies the demand between
all possible pairs of origin and destination entities (usually
nodes or set of nodes) in a network. Its entries represent
the volume of traffic flowing between the respective origins
and destinations. The information available within a TM is
essential for many network planning functions. Knowing the
volume of expected demand and the locality of traffic flows
is a fundamental prerequisite for capacity planning, network
provisioning and slice dimensioning. The latter are all of high
significance towards meeting the goal of serving the demand
with satisfactory quality in terms of delay, packet loss rate
and/or other Quality of Service (QoS) / Quality of Experience
(QoE) parameters.

Particularly in the context of 5G, which is envisioned to
be a multi-service network capable of accommodating a wide
range of verticals and the diverse set of performance and

This work was supported by the European Commission in the framework of
the H2020-ICT-19-2019 project 5G-HEART (Grant Agreement No. 857034).

service requirements that they entail over the same physical in-
frastructure, understanding the underlying traffic requirements,
patterns, and trends is vital for Network Slicing [1]. Each
network slice represents an end-to-end independent logical
network, operating on the single shared physical infrastructure
and comprising dedicated and/or shared resources (e.g., pro-
cessing power, storage, bandwidth). Analyzing and predicting
the traffic related to the targeted functionality will enable
a smart, data-driven decision making process regarding the
selection of an appropriate slice, the allocation of sufficient
resources and the flexible adaptation in cases of network
failures.

Many traffic engineering tasks such as routing and load
balancing, as well as fault diagnosis and management, leverage
the information of the distribution of traffic within the network
and the ability to predict the latter’s evolution in the presence
of changes in topology, traffic patterns or even functional
roles of specific elements. For example, in the context of
the emerging network virtualization paradigm, the pursuit of
the optimal placement (with regard to minimizing the waste
of resources and fairly balancing the network load without
performance degradation) of the virtualized network functions
(VNFs) further highlights the importance of TMs [2].

The most straightforward approach for constructing a TM
is obtaining direct measurements at the network ingress and
egress points, through collecting packet traces, performing
flow-level aggregation and/or employing packet/flow sam-
pling [3]. However, such an approach requires the deployment
of additional modules at nodes that consume storage and
processing resources. Consequently, direct measurement gives
rise to high administrative costs and computational overhead,
possibly leading to performance degradation, since it can affect
the forwarding performance of the involved nodes and does
not scale well to larger networks. Another, more practical
alternative is Traffic Matrix Estimation (TME) by means of
path-level Network Tomography (NT) [4], which consists of
inferring a TM from link-level measurements that are readily
available to network administrators as SNMP link loads.

Recent advances and progress in deep neural networks and
stochastic optimization methods have enabled the creation of
deep generative models [5]. Considering any kind of observed



data as a finite set of samples from an underlying distribution,
these models constitute a powerful way of approximating this
data distribution using unsupervised learning, and they are
able to generate new “similar” data points. In this paper,
we leverage a deep generative model to propose a data-
driven method for solving the ill-posed statistical inverse
problem of estimating the unobserved traffic matrix from the
corresponding measured link loads (see Section III-A). The
key contributions of our work are summarized as follows:

• The limited availability of public TM datasets poses an
obstacle to researchers and/or professionals who wish to
test and experimentally validate their proposed solutions.
In order to synthesize traffic matrices that conform to the
observed constraints of a particular network, we train a
Variational Autoencoder (VAE) [6], [7] with the available
historical data and we use the trained decoder neural
network to generate new data points.

• Leveraging the trained decoder neural network of the
VAE, we formulate the TME NT problem as an opti-
mization problem in the latent space, by assuming that
the solution is “similar” to the previously observed TMs
and, therefore, can be generated by said decoder. Since
the generative model is differentiable, the minimization
of the objective function can be done using an iterative
optimizer.

• We transform the aforementioned two-stage TME method
(first VAE training and, then, optimization in the latent
space) into a type of “concurrent” optimization over the
parameters of the generative model and the latent vectors.
To that end, motivated by [8], we incrementally optimize
the sequence of objective functions constructed from the
respective sequence of generative models that is obtained
during different stages of the training process (i.e., as
the parameters of the generative network change during
training).

• We implement the proposed methods with all alternative
options discussed in this paper and we publish1 the source
code under a permissive free software license, along with
detailed documentation.

• We extensively evaluate the performance of the proposed
methods, using a publicly available dataset of real traffic
matrices recorded in the Abilene [9] backbone network
over a period of 24 weeks.

The remainder of this paper is organized as follows. In Sec-
tion II, we briefly review related work. Section III introduces
the TME problem in the context of NT, and sets up the stage
for our work regarding optimization methods and variational
autoencoders. The main part and key contributions of this
paper are listed in Section IV, which describes in detail the
proposed method for TM synthesis and estimation, along with
the “concurrent” incremental optimization process in the latent
space. In Section V, we present the implementation details and
the employed experimental setup, and we report the respective

1https://github.com/MikeKalnt/VAE-TME

performance evaluation results. Finally, Section VI concludes
the paper.

II. RELATED WORK

Traffic matrix estimation has been extensively researched
in the last two decades and remains still a rather active
topic [10]–[14]. In this section, we focus on approaches that
attempt to overcome the ill-posed (i.e., under-determined)
nature of the TME from link load measurements NT problem
by incorporating artificial neural networks. These approaches,
which are most relevant to our work, do not rely on additional
assumptions about origin-destination (OD) flows and statistical
modeling techniques. Instead, as a general rule, they try to
exploit large volumes of measurement data, in order to learn
in a supervised fashion the spatio-temporal properties of the
inverse system and obtain the direct mapping of link counts
to the traffic matrix. After the formulation of the estimation
inverse problem as a regression problem and the construction
of a suitable cost/objective function, the optimal parameters
of the employed neural network architecture can be obtained
by an iterative optimization algorithm. Then, the traffic matrix
can be estimated from the observed link loads using the trained
network.

Jiang et al. [15] were among the first to introduce the use of
neural networks for estimating large-scale traffic matrices. The
method they proposed is based on a back-propagation neural
network (BPNN), combined with the iterative proportional
fitting procedure (IPFP). In [16], the authors combine a non-
linear autoregressive exogenous model (NARX) that is capable
of capturing the time-varying patterns of traffic, with the
genetic algorithm (GA) for obtaining the optimized weights
and biases. In [17], end-to-end traffic is decomposed into
a low-frequency component that captures the change trend
and a high-frequency component that reflects the fluctuation.
The former is described with an auto-regressive (AR) model,
wheras the latter is modeled by a BPNN. A deep belief
network (DBN) architecture is used in [18], in order to capture
the dynamic features of traffic and learn the properties of
the ill-posed inverse inference system. The DBN is trained
with pairs of historical data (link counts and respective traffic
matrices) and can, then, be used to estimate the traffic matrix
that corresponds to the provided input of link counts. This
approach is further examined in the context of data center
networks in [19].

More recent works [20], [21] have attempted to extend
the input of the employed neural networks by explicitly
incorporating the routing information and the network topo-
logical structure. More specifically, in [20], the authors use a
BPNN whose input is formed as the product of the Moore-
Penrose inverse of the network’s routing matrix and the link
load vector. The expectation maximization (EM) algorithm is
applied to the output of the BPNN in order to improve the
estimation accuracy. In [21], TME is examined in the light of
graph embedding. The network is modeled as a time-varying
graph that is transformed into a vector of estimated OD flows,
by feeding link load adjacency matrices to a convolutional



neural network (CNN). A feedforward backpropagation neural
network trained with the Levernberg-Marquardt algorithm
(LMA) is employed in [22]. Finally, deep learning models have
achieved promising results in TM prediction, an instance of
multivariate time series prediction, where the goal is to predict
future network-wide traffic assuming that historical TM data
are available. For example, Zhao et al. [23] decompose the
original TM series into multilevel subseries using the discrete
wavelet decomposition. The spatial dependencies among flows
are extracted by a CNN, while the temporal evolution features
are captured by a long short-term memory neural network
(LSTM) with a self-attention mechanism.

In our work, we leverage a deep generative model (namely,
a variational autoencoder) to solve the TME inverse problem,
an approach that has been applied successfully in the field
of computational imaging [24]. Instead of trying to learn the
mapping from link counts to the traffic matrix, we use the
trained decoder network of the VAE to transform TME into a
minimization problem in the latent space that can be solved
using a gradient-based optimizer (see Section III-B).

III. PROBLEM FORMULATION AND DEEP LEARNING
BACKGROUND

A. Network Tomography

Network tomography refers to the inference of unmeasured
network attributes based on measurements realized at a subset
of accessible network elements. The traffic matrix estimation
problem from the NT perspective is based on a system
of linear equations describing the relationship between the
traffic matrix, the underlying routing and the observed link
counts, and regards statistical inference methods for estimating
the unobserved traffic matrices from the available link load
measurements. In particular, assuming a network with = nodes
and < links, the traffic matrix is an =×= matrix whose element
at row 8 and column 9 represents the traffic between origin
node 8 and destination node 9 . For convenience, the traffic
matrix is often organized into a ?-dimensional vector x, where
? is the number of OD flows. By denoting the <-dimensional
vector of link counts as y and assuming that routing is fixed
during the measurement period, we can formulate the linear
model y = X · x, where X is the < × ? routing matrix whose
element A8 9 is equal to 1 if OD flow 9 traverses link 8 or
0 otherwise. In this context, TME is posed as the inverse
problem of recovering the x that corresponds to a specific
measured y, given a known X. The difficulty lies in the fact
that the aforementioned system of linear equations is heavily
under-determined (i.e., matrix X is not full rank and there are
many solutions that fit the observations), since the number of
OD flows is almost always much larger than the number of
links. This ill-posed nature of the TME NT problem is usually
addressed by using statistical models and regularization to
impose additional structural assumptions.

B. Optimization of Objective Functions

Gradient descent is a first-order iterative optimization al-
gorithm for minimizing a differentiable objective function by

updating the parameters in the opposite direction of its gradient
with respect to these parameters. The size of the steps taken
to reach a (local) minimum is determined by the learning rate.
Depending on the amount of data used for the computation of
the gradient of the objective function, the following variants
of gradient descent are defined [25]:
• Batch gradient descent: The gradient of the objective

function ℓ(\) with respect to the parameters \ is com-
puted for the entire training dataset:

\ = \ − [ · ∇\ℓ(\), where [ is the learning rate.

Since the entire training set is considered every time the
parameters are updated, batch gradient descent can be
very slow and it is not suitable for online learning.

• Stochastic gradient descent (SGD): A parameter update
is performed for each training data point:

\ = \ − [ · ∇\ℓ(\; G8; H8),

where G8 is the 8-th training sample and H8 the respective
label. SGD is usually much faster and can be used to
learn online, i.e., with new samples on-the-fly. However,
the frequent updates of high variance make the objective
function to fluctuate a lot, which might hinder conver-
gence to the exact minimum.

• Mini-batch gradient descent: Combining the previous two
approaches, in mini-batch gradient descent, an update is
performed for every mini-batch of = training samples:

\ = \ − [ · ∇\ℓ(\; G8:8+=; H8:8+=).

In that way, the trade-off between the accuracy/efficiency
of the parameter update and the respective time required
is better balanced.

Kingma et al. [26] proposed Adam, an adaptive learning rate
optimizer that computes per-parameter adaptive learning rates.
This is achieved by maintaining an exponentially decaying
average of past gradients and past squared gradients, using
bias-corrected estimates of their first and second moments. It
has been demonstrated to be fast in terms of convergence and
highly robust for modeling complex structures.

C. Variational Autoencoders

Variational autoencoders [6], [7] are a deep generative
model with latent variables. They can be defined as a reg-
ularized version of autoencoders that avoids overfitting and
makes the generative process possible by ensuring that the
latent space is continuous (i.e., points of the latent space that
are close are not decoded to completely different contents)
and complete (i.e., any point sampled from the latent space
corresponds to a “meaningful” decoded content). Contrary to
vanilla autoencoders, VAEs encode inputs as distributions over
the latent space instead of single points. In practice, these
encoding distributions are regularized to be close to a stan-
dard Normal. Since the posterior distribution of the encoded
variable given the decoded one is intractable for a continuous
latent space, the variational inference technique is used to



Fig. 1. The variational autoencoder model architecture.

find a deterministic approximation. The training process of
the model can be summarized as follows. First, the input is
encoded as a distribution over the latent space and a latent
point is generated by sampling from this distribution. Then,
the sampled point is decoded and the reconstruction error is
computed and, finally, back-propagated through the network.
The loss function that is minimized during training consists of
a reconstruction term that aims to optimize the performance
of the encoding-decoding scheme and a regularization term
that ensures the desired properties of the latent space. This
regularization term is expressed as the Kulback-Leibler (KL)
divergence between the returned encoding distribution and a
standard Normal prior.

More formally, a VAE consists of an encoder, a decoder, and
a loss function. The enconder @\ (z | x) is a neural network
with parameters (i.e., weights and biases) \ that compresses its
input x into a lower-dimensional latent representation space.
In particular, the encoder outputs the mean - and standard
deviation 2 of @\ (z | x), which is regularized to be close to a
standard Normal distribution. The hidden representation z can
be obtained by sampling from this distribution. The decoder
?q (x | z) is another neural network with parameters q that
takes as input the hidden representation z and reconstructs
(i.e., “decodes”) the original input x̂. In order to measure how
well the decoder reconstructs the input x given its hidden
representation z, we use the reconstruction log-likelihood
log ?q (x | z). The loss function for a data point x is

ℓ (\, q; x) = � ! (@\ (z |x) ‖?(z)) − E@\ (z |x)
[
log ?q (x |z)

]
,

where the expectation in the second term (i.e., the recon-
struction error) is taken with respect to the encoder’s dis-
tribution over the representations, and the first term denotes
the Kullback-Leibler divergence between the encoder’s dis-
tribution @\ (z | x) and the prior distribution ? (z), which
as previously mentioned is specified as a standard Normal
N (0, O). The variational autoencoder is trained to minimize
loss with respect to the parameters of the encoder \ and the
parameters of the decoder q using stochastic gradient descent.
Fig. 1 illustrates the described architecture.

IV. THE PROPOSED VAE ENABLED METHODS

A. Traffic Matrix Synthesis

Traffic matrices are necessary as input to a variety of
network design, planning and traffic engineering tasks. How-
ever, the limited number of publicly available TM datasets,
combined with the high administrative and computational

cost of constructing TMs by direct measurements at a given
network, constitute a serious barrier to the researches and
professionals who wish to test and evaluate the performance
of their proposed network applications, algorithms and pro-
tocols via simulations or experimental trials. One way to
overcome this obstacle is to artificially create realistic traffic
matrices, i.e., to synthetically generate OD traffic levels and
organize them in a matrix that is feasible and well-matched
to a given topology, potentially obeying the spatio-temporal
patterns previously observed in real traffic matrices of this
particular network. In this work, we propose the use of a deep
generative model – particularly, a variational autoencoder –
for traffic matrix synthesis. Given a number of prior TMs
used for the training of the VAE, new synthetic TMs that
are “similar” to the employed examples can be generated by
the trained decoder. These prior TMs can be historical data
that have been obtained at some point in the past, or can be
explicitly constructed for this purpose, mitigating the overall
induced cost by reducing the number of the measured TMs;
only a subset is directly measured, whereas the rest can be
synthetically generated. Apart from its intrinsic value, traffic
matrix synthesis is a necessary enabling step for the estimation
method that will be presented in the following section.

A deep generative model learns the underlying data distribu-
tion of the training set, which explains how data are generated,
and allows us to sample from it in order to produce new data
points with some variations. As described in Section III-C, a
VAE maps its input to a I-dimensional Normal distribution
(a task performed by the encoder) and reconstructs sampled
hidden representations of this latent space back into its original
dimension (a task performed by the decoder). More precisely,
the encoder outputs a mean and a standard deviation I-
dimensional vector corresponding to an approximate Normal
encoding distribution that must be close to the posterior
distribution of the latent variable given the decoded one. This
is achieved by modifying the loss function used in training to
include, apart from the typically used reconstruction error, a
KL divergence term as well, providing a measure of the extent
to which the approximate encoding distribution is different
from the prior distribution of the latent variable (assumed to be
standard Normal). In this particular case, the KL divergence of
a diagonal multivariate Normal distribution with mean - and
standard deviation 2 and a standard Normal with zero mean
and unit variance takes the form:

� ! (N (-,2)‖N (0, O)) =
1
2

I∑
8=1

(
f2
8 + `2

8 − 1 − ln
(
f2
8

))
.

Mapping each input to such a multivariate Normal distribution
instead of a fixed point ensures that the latent space is
continuous and that hidden representations (i.e., latent vec-
tors) are regularized to be centered around the origin. As a
consequence, new synthetic data points can be generated from
latent vectors sampled from a I-dimensional standard Normal
distribution and fed to the trained decoder neural network.



B. Traffic Matrix Estimation

In this section, we address the problem of estimating the
traffic matrix x that corresponds to a specific measured vector
of link counts y, given a known routing matrix X, as a
constrained minimization problem with generative models.
The idea is to search in the latent space of a suitable generative
model for a generated TM that best explains the measured link
loads. Given a set of previously observed TMs, we confine the
TM estimate to have properties similar to these past TMs.
In particular, we leverage a variational autoencoder that is
trained with a dataset of expected targets, as described in
Section IV-A. The trained decoder neural network of the VAE
learns the underlying distribution of the historical data and the
observed spatio-temporal patterns of traffic. As a consequence,
it is capable of synthesizing artificial examples x from random
low-dimensional latent vectors z that fit the examined network
topology and resemble the samples of the training set.

Assuming that the solution we are searching for belongs to
the range of the trained decoder (i.e., it can be synthesized
by said decoder), we can use the learned distribution to trans-
form the TME inverse problem in the following minimization
problem in the low-dimensional latent space:

arg min
z

y − X · 3 (z)
2

2, (1)

where 3 (·) represents the decoder neural network. In this
way, we constrain the solution to be within the range of the
employed generative model (the estimated x is by definition
generated by z) and we ensure agreement to the link measure-
ments by minimizing the distance to the observations y.

In order to encourage the exploration of regions that are
preferred by the decoder, we can add a regularization term
to the employed objective function. Taking into consideration
that the VAE imposes a Gaussian prior distribution on z (see
Section III-C), the minimization problem can be restated as
follows:

arg min
z

[y − X · 3 (z)
2

2 + 2 ·
z2

2

]
, (2)

where parameter 2 provides a means to balance between the
importance of the prior and the measurement error. Since de-
coder 3 is differentiable, the gradient of the objective function
can be computed using the chain rule and the optimization
problem can be solved by starting from a random initial point
z0 and employing a gradient based optimizer (e.g., SGD or
Adam). The optimization iterations required can be reduced
by choosing a “good” initial latent vector z0. To that end, we
examine a number  of random latent vectors and choose the
one that has the smallest distance to the measured link counts:

z0 = zk s.t.
y−X ·3 (z: )2

2 ≤
y−X ·3 (z8)2

2, for 8 ∈ 1, · · · .

After finding the optimal z∗ that minimizes (1) or (2), we can
obtain the estimated TM through the mapping x̂ = 3 (z∗).

Compared to conventional NT TME methods that rely
on additional assumptions regarding the OD flows, in the
proposed deep learning enabled approach, all prior knowledge

needed for the reconstruction of the TM from the observed link
measurements is indirectly learned from the training dataset.

C. Incremental Optimization

The estimation method described in the previous section
constitutes a two-step procedure. First, we train a VAE with
historical data and, then, we leverage the trained decoder
to formulate the TME problem as a minimization problem
in the latent space, which we solve using a gradient based
optimizer. However, the objective functions in (1) or (2) might
be non-convex with many local minima, in which case gradient
descent might not work well (i.e., might not converge to the
true global minimum). To address this potential issue, instead
of constructing the objective with the fixed trained decoder and
then applying gradient descent, we incrementally optimize the
sequence of objective functions constructed with the sequence
of decoder networks that are obtained during different stages
of the VAE training by adopting the respective parameter
values. This kind of “concurrent” optimization over the latent
vectors and the parameters of the decoder network has been
experimentally shown to find the global minimum even in
cases where direct gradient descent on the objective formed
with the final learned network fails [8].

More precisely, given a specific architecture for the VAE,
we obtain the sequence of decoder networks 30, 31, · · · , 3)
(3) represents the final trained network) from the sequence
of parameters q0, q1, · · · , q) , produced at different stages of
training (i.e., every predetermined number of training epochs).
As soon as we have decoder 38 , we construct the objective

y−
X·38 (z)

2
2 or

y−X·38 (z)2
2+2·

z2
2 and we find optimum z∗

8
by

applying, for example, Adam. This “current” optimum will be
used for the initialization of Adam when optimizing the next
objective. That is, after another predetermined number of VAE
training epochs are completed and we obtain the decoder 38+1,
we will use z∗

8
as the starting point for the Adam optimizer on

the new objective
y−X ·38+1 (z)2

2 or
y−X ·38+1 (z)2

2+2 ·
z2

2
and we will get the updated optimum z∗

8+1. At the end, the TM
estimate will be x̂ = 3) (z∗) ).

V. PERFORMANCE EVALUATION

A. Experimental Setup and Implementation

In order to evaluate the performance of the proposed VAE-
enabled methods, we have conducted numerical experiments
with publicly available data [9], collected from the Abilene
network (Fig. 2) for a period of 24 weeks. The network
consists of 12 nodes, resulting in 144 traffic pairs (i.e., a 12×12
TM), which are captured in 5-minute intervals for consecutive
weeks from 2004-03-01 to 2004-09-10. The provided dataset
includes also the routing matrix of the network and the OSPF
weight of every link. We used the first 13 weeks (i.e., the
first 26 208 TMs) as the training set and the 14th week (i.e.,
the next 2016 TMs) as the testing set. We employed the
Adam optimizer with a learning rate of 0.001, and ReLU
was chosen as the activation function for the neural networks.
The number of dimensions of the latent space was set to 10.



Fig. 2. The Abilene network.

Tables I and II present the structure of the VAE’s encoder
and decoder, respectively. The implementation was done using
the Keras [27] deep learning API, running on top of the
TensorFlow [28] machine learning platform.

TABLE I
STRUCTURE OF VAE ENCODER

Layer type Kernel Stride Padding Output Shape

Input - - - (12, 12, 1)

Dropout - - - (12, 12, 1)

Conv2D (3, 3) (2, 2) SAME (6, 6, 32)

Conv2D (3, 3) (2, 2) SAME (3, 3, 64)

Conv2D (3, 3) (1, 1) SAME (3, 3, 128)

Flatten - - - (1152)

Dense - - - (64)

Dense - - - (10)

Dense - - - (10)

Sampling - - - (10)

TABLE II
STRUCTURE OF VAE DECODER

Layer type Kernel Stride Padding Output Shape

Input - - - (10)

Dense - - - (64)

Dense - - - (576)

Reshape - - - (3, 3, 64)

Conv2DTranspose (3, 3) (1, 1) SAME (3, 3, 128)

Conv2DTranspose (3, 3) (2, 2) SAME (6, 6, 64)

Conv2DTranspose (3, 3) (2, 2) SAME (12, 12, 32)

Conv2DTranspose (3, 3) (1, 1) SAME (12, 12, 1)

B. Results and Discussion

As mentioned in Section IV-B and validated during our
experiments, by choosing a “good” initial latent vector we

Fig. 3. Evolution of loss along training epochs.

can reduce the number of the required optimization iterations.
In particular, after selecting the “best” initial latent vector
in terms of distance to the measured link counts among
3000 random candidates for minimization (1) and 500 for
minimization (2), we managed to reduce the optimization
iterations from 10 000 to 5000 for both cases. We note that
all the subsequently reported results are obtained following
this approach. Fig. 3 illustrates the VAE’s total loss (i.e.,
reconstruction error and KL divergence) over the training
epochs.

The performance of the proposed TME methods is eval-
uated using the following metrics: the root mean square
error (RMSE), the normalized mean absolute error (NMAE),
the spatial relative error (SRE) that expresses the relative
estimation error of each individual OD flow over its entire
lifetime, and the temporal relative error (TRE) that summarizes
the relative estimation error of all OD flows (i.e., the entire
TM) at a given time point. The aforementioned errors are
calculated as follows:

RMSE(C) =
x̂C − xC2√

#
=

√√√
1
#

#∑
8=1
(x̂C (8) − xC (8))2,

NMAE(C) =
x̂C − xC1xC1

=

∑#
8=1 |x̂C (8) − xC (8) |∑#

8=1 |xC (8) |
,

SRE(8) =
x̂1:) (8) − x1:) (8)


2x1:) (8)


2

=

√∑)
C=1 (x̂C (8) − xC (8))

2√∑)
C=1 (xC (8))

2
,

and TRE(C) =
x̂C − xC2xC2

=

√∑#
8=1 (x̂C (8) − xC (8))

2√∑#
8=1 (xC (8))

2
,

where 8 = 1, 2, · · · , # indicates each individual OD flow and
C = 1, 2, · · · , ) denotes each measurement time point. Table III
summarizes the results for the three examined variations of
the proposed TME method. As can be seen, minimization (2)
with 2 = 0.1 does indeed improve all the employed metrics
(particularly SRE) by incorporating the regularization term.
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Fig. 4. Temporal relative errors.

Regarding the concurrent incremental optimization, we have
used the objective (2), the number of training epochs after
which we obtain each decoder was set to 20, and the number
of optimization iterations for every objective of the sequence
was set to 3000. For this case only, the results reported in
Table III regard the first 500 TMs of the testing set.

TABLE III
ESTIMATION ERRORS

VAE Training and Minimization (1)

Error Mean Median Std Max

RMSE (Mbps) 13.9045 12.6126 5.2089 59.6762

NMAE 0.3544 0.3415 0.0824 0.8176

TRE 0.3557 0.3320 0.1098 1.0387

SRE 1.1233 0.6323 4.6677 56.5583

VAE Training and Minimization (2)

Error Mean Median Std Max

RMSE (Mbps) 13.6893 12.6701 5.0450 60.6747

NMAE 0.3466 0.3350 0.0748 0.9496

TRE 0.3488 0.3381 0.0989 1.0249

SRE 0.7330 0.5769 1.0698 12.6865

Concurrent Training and Minimization (2)

Error Mean Median Std Max

RMSE (Mbps) 13.3673 12.4220 5.5080 43.2572

NMAE 0.4262 0.3972 0.1473 1.3309

TRE 0.4033 0.3791 0.1505 1.3824

SRE 1.7464 0.8027 6.9723 81.7783

Fig. 4 illustrates the temporal relative errors for the 2016
TMs of the testing set (each TM corresponds to a time point)
for the two examined minimization objectives, and Fig. 5
depicts the spatial relative errors of every OD Flow (144 in
total). The respective cumulative distribution functions (CDFs)
are presented in Fig. 6 and Fig. 7. As can be observed,
minimization (2) consistently leads to slightly better estimates
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Fig. 5. Spatial relative errors.
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Fig. 6. Cumulative distribution function (CDF) of TREs.
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Fig. 7. Cumulative distribution function (CDF) of SREs.

for all OD flows and testing TMs.
Finally, we would like to point out that the goal of this

experimental evaluation was to verify the feasibility of the
proposed method and the suitability of using a VAE deep
generative model for solving the inverse TME problem. As



such, in this work, we did not focus on finding the best
(hyper)parameters that would potentially lead to the optimal
estimates for the conducted experiments.

VI. CONCLUSION

In this paper, we have addressed traffic matrix estimation
from link-level measurements, an ill-posed inverse problem
belonging to the broad class of compressed sensing. However,
instead of relying on sparsity as usual [4], we proposed the use
of a deep generative model as a prior for the TM reconstruction
from compressive measurements. In particular, we have trained
a variational autoencoder over a set of historical data (i.e.,
previously measured TMs) and we have used the trained
decoder for traffic matrix synthesis and for transforming the
TME NT problem into a minimization problem in the low-
dimensional latent space. Furthermore, we have explored the
alternative approach of incrementally optimizing the sequence
of objective functions corresponding to the sequence of the
decoder’s parameters, as the latter are produced at different
stages of the VAE’s training process. Experimental results
validated the achieved performance of the proposed methods.

A trained generative model can reliably generate data points
that are similar to its training set. Therefore, the use of
a fixed pretrained decoder for TME is expected to work
well only if the unknown TM belongs to the range of the
employed decoder, making the proper selection of suitable
training sets critical for the success of the proposed method.
Moreover, training a generative model can be challenging in
terms of computational resources and time. Investigating the
use of untrained generative models (which, somewhat counter-
intuitively, have recently been shown to achieve promising
results [29], [30]) for overcoming the aforementioned issues is
left for future work. Finally, another direction worth explor-
ing is the use of conditional generative models [31], which
allow the generation of multiple solutions from the same
measurements (i.e., sampling from the recovered posterior
distribution).
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