NFV-compliant Traffic Monitoring and Anomaly Detection based on Dispersed Vantage Points in Shared Network Infrastructures

Adam Pavlidis, Giannis Sotiropoulos, Kostas Giotis, Dimitris Kalogeras, Vasilis Maglaris
Network Management & Optimal Design Laboratory (NETMODE)
School of Electrical & Computer Engineering
National Technical University of Athens

4th IEEE Conference on Network Softwarization (NetSoft 2018)
June 26th, 2018
Montreal, Canada
Modern ICT Infrastructures

Current considerations:

- Ever-growing demand for cloud services and resources
 - Compute, Storage, Network
- Dramatic proliferation of multi-vector cyber attacks
- Need for flexible and adaptive operations

Modern Technologies (SDN, NFV) enable:

- Disassociation of SW from HW (Virtualization)
- Automation and Streamlining of operations (Configurable SW)
- Reduction of CAPEX & OPEX (Reusable COTS)
Monitoring and Analytics

- Important for planning and operations:
 - Emphasis on Multi-Tenant (owner) environments

- Typical Problems:
 - Placement of Monitoring Agents
 - Processing, Storage
 - Access Control

- Environments to consider:
 - Internet Exchanges (e.g. AMS-IX)
 - Data Center Interconnect and Access facilities
 - Virtual Organizations in LAN and WAN environments
Network Monitoring

- Traffic export tools (e.g. NetFlow, sFlow)
 - Data as input to Analysis Tools
 - Sampling: Constant tradeoff (scalability / visibility)
- Hierarchically structured architecture, defining distinct **Vantage Points (VP)**
Network Monitoring

- Traffic export tools (e.g. *NetFlow, sFlow*)
 - Data as input to Analysis Tools
 - Sampling: Constant tradeoff (scalability / visibility)

- Hierarchically structured architecture, defining distinct **Vantage Points (VP)**

Vantage Point:
“A position or place that affords a wide or advantageous perspective.” source: Wikipedia
Network Monitoring

- Traffic export tools (e.g. NetFlow, sFlow)
 - Data as input to Analysis Tools
 - Sampling: Constant tradeoff (scalability / visibility)
- Hierarchically structured architecture, defining distinct **Vantage Points (VP)**
 - Distributed probes (Active/Passive)
 - Route Views
 - RIPE Atlas
 - RIPE Routing Information Service
 - Looking glass tools
NFV-compliant Traffic Monitoring and Anomaly Detection

Motivation:

NFV-based, container driven architecture, focused on:

- Collecting Network Monitoring data from multiple vantage points

- Offering related analytics services to users within multi-tenant infrastructures
 - Traffic Analysis and Anomaly Detection services based on varying Monitoring Views
Architectural Components

- Monitoring Data Handler
 - Collect
 - Isolate (tag)
 - Enrichment
 - Export

- Centralized Data Warehouse
 - Store tagged data
 - Expose to consumers

- Customized (Tenantized) Analytics
 - Traffic Visualization
 - Anomaly Detection

- Orchestrator
 - Validate User requests
 - Provision new services
 - Configure live instances
Monitoring Data Handler

- **Collector**
 - sFlow (*sflowtool*)
- **sMonNet module (sFlow Monitored Network)**
 - Tagging (Packet Headers, sFlow Agent)
 - Dedicated Enrichment (*MaxMind* datasets)
- **Kafka – Distributed Messaging Platform**
 - Produce/Consume samples
 - Separate topics (ingestion, enrichment jobs)
Centralized Data Warehouse

- **ElasticSearch**
 - Schema-less *documents*
 - Separate tags per *Vantage Points (VP) & User (Tenant)*
 - Full-text search

- **AUTH Middleware**
 - Proxy for *Elasticsearch*
 - Validation of user-provided tags (isolation)
 - Enterprise solutions
 - *X-PACK, Search Guard*
Customized Analytics Services

- **Anomaly Detection per Vantage Point**
 - Lightweight algorithm for Entropy-based Anomaly detection
 - Analyze data from varying VPs

- **Kibana PoC: Traffic Visualization**
 - Provide pre-defined but configurable dashboards
Orchestrator

- **External Facing API**
 - Tornado Web Framework

- **RBAC**
 - User – Tag Association
 - Validation of User Requests
 - AUTH Middleware

- **Provision & Manage**
 - Kubernetes API
 - sMonNet
 - Provision/Scale sMonNet jobs
 - User & VP identifiers and Kafka Topics pub/sub specification
 - Customized Analytics
 - Provisioning and Initialization

A. MONITORING DATA HANDLER

- sMonNet Pipeline
 - Data Identification
 - Data Enrichment
 - Authenticator

B. CENTRALIZED DATA WAREHOUSE

- Elasticsearch
 - Anomaly Detection
 - Traffic Visualization

C. CUSTOMIZED ANALYTICS

- D. ORCHESTRATOR
 - Web UI
 - RBAC
 - Provision & Manage

Docker Containers managed by Kubernetes

(i) - Export
(ii) - Ship data
(iii) - Ethernet Switch
(iv) - Kafka Cluster - KC
(v) - Samples

PROVISION & MANAGE

- Kubernetes API
- sMonNet
 - Provision/Scale sMonNet jobs
 - User & VP identifiers and Kafka Topics pub/sub specification
- Customized Analytics
 - Provisioning and Initialization
Orchestrator

- **External Facing API**
 - Tornado Web Framework

- **RBAC**
 - User – Tag Association
 - Validation of User Requests
 - AUTH Middleware

- **Provision & Manage**
 - Kubernetes API
 - sMonNet
 - Provision/Scale sMonNet jobs
 - User & VP identifiers and Kafka Topics pub/sub specification
 - Customized Analytics
 - Provisioning and Initialization

Diagram:

- **A. MONITORING DATA HANDLER**
 - sMonNet Pipeline
 - Data Identification
 - Data Enrichment
 - Job 1
 - Kafka Cluster - KC

- **B. CENTRALIZED DATA WAREHOUSE**
 - Elasticsearch

- **C. CUSTOMIZED ANALYTICS**
 - Anomaly Detection
 - Traffic Visualization

- **D. ORCHESTRATOR**
 - Web UI
 - REST API
 - RBAC
 - Provision & Manage

- **E. ORCHESTRATOR**
 - AUTH Middleware

- **NETMODE testbed**
 - (GRNET)

- **~okeanos IaaS**
 - (GRNET)

- **NETSOFT**
 - (NTUA LAN)
Case Study

Lightweight anomaly detection on data gathered from different VPks.

Aim: to improve detection of different types of network anomalies

Data from NTUA Campus LAN:

- **Benign Traffic:**
 - Traces from an access switch
 - Traces from a core switch/router

- **Attack Traffic:**
 - Worm Propagation
 - Port Scanning attack
Experimental Results

Worm Propagation:
Increased visibility in Access VP
- Granular network view for localized characteristics
- Scalability via Kafka Pipeline
 - many access devices

Port Scanning:
Increased visibility in Core VP
- Good overview, suitable for infrastructure-wide anomalies
- Fewer strategic observation points (VPs) aggregating large volumes of traffic
Experimental Results

Worm Propagation:
Increased visibility in Access VP
- Granular network view for localized characteristics
- Scalability via *Kafka* Pipeline
 - many access devices

Port Scanning:
Increased visibility in Core VP
- Good overview, suitable for infrastructure-wide anomalies
- Fewer strategic observation points (*VPs*) aggregating large volumes of traffic
Experimental Results

Worm Propagation: Increased visibility in Access VP

- Granular network view for localized characteristics
- Scalability via Kafka Pipeline
 - many access devices

Port Scanning: Increased visibility in Core VP

- Good overview, suitable for infrastructure-wide anomalies
- Fewer strategic observation points (VPs) aggregating large volumes of traffic
Experimental Results

Worm Propagation: Increased visibility in Access VP
- Granular network view for localized characteristics
- Scalability via Kafka Pipeline
 - many access devices

Port Scanning: Increased visibility in Core VP
- Good overview, suitable for infrastructure-wide anomalies
- Fewer strategic observation points (VPs) aggregating large volumes of traffic
Considerations for Future Work

- Explore applicability in multi-tenant cloud environments

- Investigate algorithms tailored to specific attack profiles:
 - Dynamically Select Vantage Points
 - Adaptively tune monitoring Sampling Rates and alarm thresholds
 - Select appropriate network identifiers (e.g. L2/L4 attributes)

- Integrate standardized MANO and Automation Frameworks:
 - OSM, ONAP, CORD
 - Ansible, SaltStack, Napalm (Vantage Point configuration)
THANK YOU!

Adam Pavlidis
apavlidis@netmode.ntua.gr